
Wide Area ATM Network
Experiments Using Emulated

Traffic Sources

Beng-Ong Lee
Victor S. Frost

ITTC-FY98-TR-10980-24

January 1998

Copyright © 1998:
The University of Kansas Center for Research, Inc.,
2291 Irving Hill Road, Lawrence, KS 66044-7541;
and Sprint Corporation.
All rights reserved.

Project Sponsor:
Sprint Corporation

Under prime contract to
Defense Advanced Research Projects Agency

Contrct Number DABT 63-94-C-0068

Technical Report

The University of Kansas

Abstract

Several wide area network testbeds have been deployed to study the performance

of Asynchronous Transfer Mode Networks (ATM). Experiments are being con-

ducted on these testbeds to measure their performance. However, one of the

weaknesses of testbed networks is the lack of realistic tra�c ows. To exper-

imentally evaluate networks, realistic ows must be generated to emulate the

actual tra�c. Such source models are needed for network design and to evaluate

tra�c shaping, routing algorithm, and control mechanisms. Future broadband

networks will carry the tra�c from commonly used applications, like telnet and

ftp. In addition, tra�c from video and voice services are expected to be a sub-

stantial portion of the network tra�c. The exponential-growth of the World Wide

Web (WWW) will also have a great impact on the design and the performance

of networks.

To emulate user tra�c on networks, empirically derived tra�c models were

collected and implemented in NetSpec 3.0, a sophisticated network performance

tool. Congestion experiments using these emulated tra�c models were designed

and conducted. User applications only see packet performance, not ATM per-

formance. As a result, packet delay jitter and packet loss were the performance

metrics here. However, the combination of transport level ow control and ATM

level tra�c shaping is also studied. This allows us to evaluate how lower level

2

layers a�ect the packet level performance.

Contents

1 Introduction 1

1.1 The AAI Network . 3
1.2 Organization . 4

2 Background 6

2.1 Asynchronous Transfer Mode (ATM) 6
2.2 Synchronous Optical NETwork (SONET) 8
2.3 Tra�c Management . 9
2.4 ATM Local and Wide Area Networks 10
2.5 TCP and UDP in Long Delay, Large Bandwidth Environment . . 11

3 Source Modeling 13

3.1 Overview . 13
3.1.1 Variation of Day . 14

3.2 Generic Tra�c Source . 16
3.2.1 Interactive Tra�c . 16
3.2.2 Bulk Transfer Tra�c . 17

3.3 TELNET . 19
3.3.1 TELNET Call Level . 19
3.3.2 TELNET Session Level . 21

3.4 FTP (File Transfer Protocol) . 23
3.4.1 FTP Call Level . 23
3.4.2 FTP Session Level . 24

3.5 VBR Video Tra�c . 26
3.5.1 Video Teleconference . 26
3.5.2 MPEG Video Stream . 28

3.6 World Wide Web Tra�c . 30
3.6.1 WWW Call Level . 31
3.6.2 WWW Session Level . 32

4 Real Time Implementation of Tra�c Models in NetSpec 33

4.1 Overview of NetSpec 3.0 . 34
4.1.1 Implementations of Interactive Tra�c 37

i

4.1.2 Implementations of Bulk Transfer Tra�c 38
4.2 TELNET Implementation in NetSpec 39
4.3 FTP Implementation in NetSpec 40
4.4 Video MPEG Implementation in NetSpec 41
4.5 Video Conferencing Implementation in NetSpec 42

5 Validation of Tra�c Models Implementation 43

5.1 FTP Models . 44
5.2 WWW Models . 47
5.3 MPEG Models . 50
5.4 Video Conferencing Models . 51

6 WAN Experiments 52

6.1 Performance Metrics . 55
6.2 No Cell Level Pacing . 59
6.3 Cell Level Pacing on Target Flows 67
6.4 Cell Level Pacing on Background Tra�c 71
6.5 Comparison of Network Performance After Network Upgrades . . 76

6.5.1 No Cell Level Pacing . 78
6.5.2 Cell Level Pacing on Background Tra�c 79

7 Lessons Learned 83

7.1 ATM WAN Performance . 83
7.1.1 TCP and UDP Protocol Performance 83
7.1.2 Tra�c Shaping . 84
7.1.3 Asymmetrical Network Structure 86
7.1.4 Early Packet Discard (EPD) Functionality and Performance 86

7.2 Doing Network Measurements . 87
7.2.1 Network Connectivity . 87
7.2.2 Host State . 88
7.2.3 Long Duration of Experiments 88
7.2.4 Large Amount of Collected Data 89

8 Conclusions and Future Work 91

8.1 Summary and Conclusions . 91
8.2 Future Work . 92

A NetSpec Scripts for Validation Experiments 94

A.1 FTP script for Validation Experiment 94
A.2 WWW script for Validation Experiment 101
A.3 MPEG script for Validation Experiment 107
A.4 VideoConference script for Validation Experiment 110

B NetSpec Scripts for WAN Experiments 112

B.1 TCP Target Flows scripts . 112
B.2 UDP Target Flows scripts . 115
B.3 25Mbps Background Tra�c script 117
B.4 60Mbps Background Tra�c script 122

List of Tables

3.1 The parameters of I, P, B frame types 30

4.1 Available Random Distributions in NetSpec 3.0 36

5.1 Interarrival Rates and lambda for FTP Sessions 46
5.2 Interarrival Rates and lambda for WWW Connections 49

6.1 Con�guration of Contention Tra�c Rate 54
6.2 Target Flow Throughput . 55
6.3 Pacing Rates for Target Flows . 67
6.4 25Mbps Background Tra�c Pacing Rates 74
6.5 60Mbps Background Tra�c Pacing Rates 74

7.1 Run Dates of the Experiments from ITTC to AAI cloud 89
7.2 Run Dates of the Experiments from AAI cloud to ITTC 90

iv

List of Figures

1.1 AAI Wide Area Network Map . 4

2.1 ATM Cell Format . 7
2.2 ATM LANs and WANs . 11

3.1 Mean, relative, hourly session arrival rates for telnet, ftp sessions,
phone connections, WWW requests. 14

3.2 Interactive Tra�c Setup . 17
3.3 Bulk Transfer Tra�c Setup . 18
3.4 TELNET Tra�c Setup . 20
3.5 TELNET packet interarrival time distribution from tcplib 21
3.6 TELNET packet size distribution from tcplib 22
3.7 FTP Tra�c Setup . 23
3.8 FTP Number Of Items distribution from tcplib 24
3.9 FTP Item Size distribution from tcplib 25
3.10 Video Tra�c Setup . 26
3.11 Compression pattern used to generate the video stream 29
3.12 WWW Tra�c Setup . 31

4.1 NetSpec's Implementation of Burst 34
4.2 Example Script of User Level VBR Tra�c 35
4.3 NetSpec's Implementation of Interactive Tra�c 37
4.4 NetSpec script for interactive tra�c 38
4.5 NetSpec's Implementation of Bulk Transfer Tra�c 38
4.6 NetSpec script for bulk transfer tra�c 39
4.7 NetSpec script for telnet tra�c 39
4.8 NetSpec script for ftp tra�c . 40
4.9 NetSpec script for MPEG video stream 41
4.10 NetSpec script for teleconferencing video stream 42

5.1 Emulated Daily FTP Tra�c . 44
5.2 Calculated Mean of Daily FTP Tra�c 45
5.3 Emulated Daily WWW Tra�c . 47
5.4 Calculated Mean of Daily WWW Tra�c 48

v

5.5 Emulated Tra�c of 12 MPEG Video Streams 50
5.6 Emulated Tra�c of 7 Videoconferencing Streams 51

6.1 Network Con�guration for ITTC to AAI Connections 53
6.2 E�ect of Cell Level Pacing . 58
6.3 Standard Deviation (ms) of Network Jitter of TCP Target Flows

from ITTC to AAI cloud . 59
6.4 Standard Deviation (ms) of Network Jitter of TCP Target Flows

from AAI cloud to ITTC . 61
6.5 Standard Deviation (ms) of Network Jitter of UDP Target Flows

from ITTC to AAI cloud . 63
6.6 Standard Deviation (ms) of Network Jitter of UDP Target Flows

from AAI cloud to ITTC . 64
6.7 Percentage of UDP Segment Losses of UDP Target Flows from

ITTC to AAI cloud . 65
6.8 Percentage of UDP Segment Losses of UDP Target Flows from

AAI cloud to ITTC . 66
6.9 Standard Deviation (ms) of Network Jitter of Cell Level Paced

TCP Target Flows from ITTC to AAI cloud 68
6.10 Standard Deviation (ms) of Network Jitter of Cell Level Paced

TCP Target Flows from AAI cloud to ITTC 69
6.11 Standard Deviation (ms) of Network Jitter of Cell Level Paced

UDP Target Flows from ITTC to AAI cloud 70
6.12 Percentage of Segment Losses of Cell Level Paced UDP Target

Flows from ITTC to AAI cloud 71
6.13 Standard Deviation (ms) of Network Jitter of Cell Level Paced

UDP Target Flows from AAI cloud to ITTC 72
6.14 Percentage of Segment Losses of Cell Level Paced UDP Target

Flows from AAI cloud to ITTC 73
6.15 Standard Deviation (ms) of Network Jitter of TCP Target Flow

with Cell Level Paced Background Tra�c from ITTC to AAI cloud 75
6.16 Standard Deviation (ms) of Network Jitter of TCP Target Flow

with Cell Level Paced Background Tra�c from AAI cloud to AAI 76
6.17 Standard Deviation (ms) of Network Jitter of UDP Target Flows

with Cell Level Paced Background Tra�c from ITTC to AAI cloud 77
6.18 Standard Deviation (ms) of Network Jitter of UDP Target Flows

with Cell Level Paced Background Tra�c from AAI cloud to ITTC 78
6.19 Percentage of UDP Segment Losses of UDP Target Flows with Cell

Level Paced Background Tra�c from ITTC to AAI cloud 79
6.20 Percentage of UDP Segment Losses of UDP Target Flows with Cell

Level Paced Background Tra�c from AAI cloud to ITTC 80
6.21 Standard Deviation of UDP Target Flows under the non-cell level

paced 60Mbps Background Tra�c 80

6.22 Losses of UDP Segments of UDP Target Flows under the non-cell
level paced 60Mbps Background Tra�c 81

6.23 Standard Deviation of UDP Target Flow under the cell level paced
60Mbps Background Tra�c . 81

6.24 Losses of UDP Segments of UDP Target Flows under the cell level
paced 60Mbps Background Tra�c 82

Chapter 1

Introduction

The idea of Asynchronous Transfer Mode (ATM) was �rst introduced in mid-

1980s. Since then, numerous studies had been conducted to fully understand the

performance and behavior of ATM wide area networks (WANs) and local area

networks (LANs). As more and more new ATM standards are being proposed

and set, the de�nition of ATM and its functionality are changing. Advanced

technology provides better ATM equipment and facilities at lower costs. All of

these lead to new research areas in network performance, switch queueing, and

new routing algorithms.

Several national wide large scale ATM testbeds, such as Multi-dimensional

Applications Gigabit Internetworking Consortium (MAGIC) and Advanced Tech-

nology Demonstration Network (ATDnet), have been deployed to experimentally

evaluate the ATM performance, such as network capacity, queueing performance.

One of the weaknesses of testbed networks is the lack of realistic tra�c ows on

the system. To experimentally evaluate networks, realistic tra�c ows must be

generated to emulate the actual tra�c. Such source models are needed for net-

work design and to evaluate tra�c shaping, routing algorithm, and control mech-

1

anisms. Future broadband networks, especially wide area networks (WANs), will

carry the tra�c from commonly used applications, like telnet and �le transfer

protocol (ftp). telnet is a widely common tool that allows a user at one site to

establish a connection to a login server at another. ftp is another tools that

provides �le accesses on remote machines. Tra�c from video and voice services

are expected to be a substantial portion of the network tra�c. The exponential-

growth of the World Wide Web (WWW) will also have a great impact on the

design and the performance of networks.

Many ATM WAN experiments have been conducted on the testbeds to mea-

sure point-to-point maximum throughput in bits/second [22]. These maximum

throughput experiments do not address the network performance under cross traf-

�c congestion scenarios. To truly understand ATM network performance from

the user prospective, realistic congestion experiments that include emulated user

tra�c must be conducted. In addition, user applications only see packet level

performance, not the ATM level performance. Packet loss and packet delay jitter

are the other important elements in describing network performance.

In this document, a summary of the empirically-derived analytic source mod-

els is described. Telnet and ftp connections, video streams, and the WWW tra�c

models are considered. The models were collected from various studies and notes

[1], [4] [9] [10] [11] [19]. These models represent tra�c ows from regular network

users. These source models have been successfully implemented in NetSpec 3.0

[21], a network testing tool. The details of NetSpec can be found in chapter 4

and [21]. Congestion experiments using these emulated user tra�c models have

been designed and conducted to evaluate network performance, such as packet

loss and packet delay jitter. In addition, e�ects of transport level ow control and

ATM level tra�c shaping are studied. All the WAN experiments were conducted

2

on the ACTS ATM Internetwork (AAI) testbed, a nation wide large scale ATM

testbed.

1.1 The AAI Network

The ACTS ATM Internetwork (AAI) is an Advanced Research Projects Agency

(ARPA) research network providing wide area Asynchronous Transfer Mode

(ATM) connectivity. It connects several DoD High Performance Computing

center and high speed wide area ATM testbeds, such as Multidimensional Ap-

plications and Gigabit Internetwork Consortium (MAGIC) and ATDnet gigabit

testbeds. The ATM cell relay service is being provided by Sprint. NEC M20

switches are interconnected to form the Sprint ATM backbone and FORE ASX-

200, ASX-200BX, ASX-1000 provide the connections at each site. AAI research

focuses on network signaling, congestion management, multicast (ATM and IP),

and Gateways to non-ATM LANs.

The University of Kansas (KU) is one of the AAI participants. Several work-

stations have been deployed by KU to di�erent geographical locations within the

AAI for the use of ATM WAN experiments. The workstations consist of DEC

Alpha 3000/700s and Sun SPARC-20s equipped with ATM OC-3 interface cards.

These workstations are capable of performing high speed ATM WAN experi-

ments. The DEC Alphas and Sun SPARC-20s have large TCP window size of up

to 20MEG bytes to perform long delay WAN experiments.

Figure 1.1 shows the AAI wide area network map and the locations of work-

stations deployed by KU. The largest Round Trip Ping Time (RTT) is 63ms from

ARL at Washington, D.C. to NCCOSC at San Diego, California.

3

AAI

FORE ASX 200BX
NRL Switch

FORE ASX 200BX

NCCOSC Switch FORE ASX 1000

FORE ASX 1000FORE ASX 200
GSD Switch

FORE ASX 200
ARL Switch

DEC Alpha 3000/700

DEC Alpha 3000/700

Sun SPARC 20

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3 OC-12

WPAFB Switch

FORE ASX

OC-3

OC-3

Washington, D.C.

Kansas City, Kansas
Lawrence, Kansas

San Diego, California

Wrigh Patterson, Ohio
DEC Alpha 3000/700

Washington, D.C.
DEC Alpha 3000/700

Sun SPARC 20
Sioux Falls, South Dakota

KU

EDC

GSD

WPAFB
NRL

ARL

NCCOSC

TIOC Switch

ITTC Switch

Figure 1.1: AAI Wide Area Network Map

1.2 Organization

This report is divided into 8 chapters.

Chapter 2 briey describes basic network background information. Common

tra�c management techniques are presented. The e�ect of TCP and UDP in a

long delay network environment is discussed.

Chapter 3 presents the telnet, ftp, video, WWW tra�c models collected from

various papers and books. Two generic models are developed. The modeling of

each tra�c type using the generic models is presented.

Chapter 4 briey describes the overview of a network testing tool, NetSpec,

4

and discusses how the random tra�c models in Chapter 3 were implemented.

Chapter 5 presents the validation of tra�c models implementation.

Chapter 6 presents the ATMWAN experiments using the emulated user tra�c

models. The combined e�ect of transport level ow control and ATM cell level

tra�c shaping is studied. In addition, comparison of network performance was

made to reect the network changes.

Chapter 7 discusses the lessons learned about the ATM WAN performance

and addresses some of the issues found during the experiments.

Chapter 8 summaries the conclusion and recommend some proposals for future

work.

5

Chapter 2

Background

This chapter aims to provide some background information about networking.

A brief description of ATM and Synchronous Optical NETwork (SONET) is

given. In addition, common tra�c management techniques to optimize network

utilization are listed in Section 2.3. The e�ects of Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) in a long delay network environment

are also discussed in Section 2.5.

2.1 Asynchronous Transfer Mode (ATM)

ATM is a packet-oriented transfer method. Multiple logical connections are al-

lowed to multiplex over a single physical connection. The basic idea of this high

speed transfer method is the �xed size ATM cells. The size of the cell is always

53 bytes. The cell has 5 bytes overhead and 48 bytes of payload. This �xed size

cell implementation enables the ATM network to intermingle voice, video, and

data without compromising the unique needs of each application. In addition, the

ATM switches can process and route the �xed size cells more quickly in hardware

6

since no additional processing is needed for the �xed size cells. Figure 2.1 shows

the ATM cell format.

B I T

HEC

PTIVCI

VPI

GFC

VCI

VCI

VPI

Payload (48 octets)

Octet

0 1 2 3 4 5 6 7

CLP

Figure 2.1: ATM Cell Format

Payload Type Indicator (PTI) and Cell Loss Priority (CLP) in the ATM

header are often used by various tra�c ow control methods. Virtual Path Iden-

ti�er (VPI) and Virtual Circuit Identi�er (VCI) are used to route cells through

networks. The Header Error Code (HEC) is used by the network equipment to

determine if any bits in the header have been corrupted during transmission.

Unlike other networks, ATM provides multiple classes of services to support

di�erent application needs. The de�ned service categories are as follows :

� Constant Bit Rate (CBR) is designed to provide support for applications

that need a highly predictable transmission rate.

� Variable Bit Rate (VBR) service is controlled by two parameters : Sus-

tainable Cell Rate (SCR) and Peak Cell Rate (PCR). SCR is the average

rate of transmission. PCS is the maximum transmission rate that a VBR

7

connection can burst out. There are two types of VBR service : Real Time

and Non-Real Time.

{ Real Time (VBR-rt) : This type of applications requires a real-time

environment. In other words, data transmission is time critical and

can not tolerate large cell delay variations. Video conferencing is a

good example.

{ Non-Real Time (VBR-nrt) : Applications that store information

for later retrieval, such as store-and-forward video usually use this type

of service. A timing relationship is not required on each end.

� Available Bit Rate (ABR) provides the maximum amount of network

resources available to the connection when needed. The data can tolerate

variation in transmission speed and network delay.

� Unspeci�ed Bit Rate (UBR) cells are the �rst to be dropped when

congestion occurs. This type of services provides the least QoS.

2.2 Synchronous Optical NETwork (SONET)

SONET is a world wide standard transport mechanism that utilizes the advan-

tages of high speed �ber optics. It is often found to be the physical infrastructure

of choice for carrier ATM networks. The most common SONET implementations

are OC-3 (155.52Mbps), OC-12 (622.08Mbps), OC-48 (2.4Gbps), and OC-192

(9.6Gbps). Unlike asynchronous protocols with bit stu�ng technique, SONET

achieves its high speed by adding pointers to identify the starting bit of the

payload.

8

SONET system con�gured in rings can recover from single �ber cuts or equip-

ment failures in less than 250ms. Most large-scale SONET networks use 4-�ber,

bidirectional, path/line-switched rings to ensure active network status. It allows

connections to be restored in milliseconds without interrupting tra�c transmis-

sion. This feature makes SONET ideal for mission-critical networks, such as

banking, hospital, military, and etc.

2.3 Tra�c Management

Network performance does not depend solely on the maximum speed of transmis-

sion. In an ATM network, congestion occurs and cells are discarded. To prevent

cell losses, ATM switches are equipped with large bu�ers to temporarily store

the cells until transient congestion passes. However, large bu�ers do not always

solve the congestion problem. Many techniques may be used individually or in

combination to have better congestion control. Below are some of the common

techniques to achieve better network utilization. The Payload Type Indicator

(PTI) and Cell Loss Priority (CLP) bits in the ATM header can be used to

selectively drop tra�c.

� Large Bu�ers : larger bu�ers are often the �rst choice for networks to

reduce the chances of tra�c congestion. Cells are temporarily stored in

the switch bu�ers during congestion instead of being dropped. However,

increasing switch bu�ers also increases cell delay and equipment cost. An

engineering approach is needed to determine the best bu�er size under the

constraint of cell delay and cost.

� Per VC Queueing : Instead of sharing the same queue for all connections,

an independent queue (bu�er) is allocated for a particular VC. In this case,

9

other connections won't be inuenced when congestion occurs on this par-

ticular VC.

� Packet Discarding : If an intermittent cell is missing at the receiving end,

the whole packet will be dropped by higher layer because of incomplete

packet error. When congestion occurs, the network only drops one of the

higher-layer packets instead of corrupting multiple packets with occasional

cell loss. There are two Packet Discarding techniques : Early Packet Discard

(EPD) and Partial Packet Discard (PPD).

{ EPD reserves the remaining bu�er space for packets that are already

in the bu�er when the threshold has been exceeded. This technique

maximizes the chances for these packets that already in the bu�er to

be successfully transmitted. The last cell of the packet is not discarded

since it indicates the next packet.

{ PPD discards all remaining cells in the packet that are already in the

bu�er when bu�er overows. It can be combined with the use of EPD

to reduce the chance of discarding cells from multiple packets.

2.4 ATM Local and Wide Area Networks

ATM LANs often consist of multiple interconnected switches that support a va-

riety of link speeds per port. ATM WANs are often connected with 155Mbps

(OC-3) links or 622Mbps (OC-12) links to aggregate the tra�c from the LANs.

Figure 2.2 shows a typical ATM network. ATM standards have been set by In-

ternational Telecommunication Union (ITU), formerly known as CCITT. As a

result, switches are available and interconnectable from many vendors.

10

OC-3

25Mbps

25Mbps

25Mbps

OC-3

OC-12

25Mbps

OC-3
OC-12

OC-12

622.02Mbps
OC-12

155.52Mbps

25Mbps

SWITCH

HOST

Figure 2.2: ATM LANs and WANs

2.5 TCP and UDP in Long Delay, Large Band-

width Environment

Transmission Control Protocol (TCP) uses a sliding window scheme to provide

its ow control. The receiver returns an acknowledgment packet to the source for

every packet it receives. This acknowledgment packet indicates the transmitted

data has been successfully received with no error. Thus, it provides reliable

data delivery. Generally, under TCP, the source keeps transmitting a sequence of

packets before it receives acknowledgment packets back from the receiver. A well-

tuned TCP connection will keep the network completely saturated with packets.

As a result, it substantially improves the network utilization.

The performance of sliding window protocol depends on the window size and

the speed at which the network accepts packets. Especially on ATM WANs,

11

window size is often found to be the bottleneck of the throughput. For a simple

TCP connection with a RTT of 40 milliseconds on an OC-3 link, the window size

must be at least

WindowSize =
135Mbits

seconds
� 0:040seconds �

1byte

8bits

= 675; 000bytes

Note that, although the nominal OC-3 link rate is 155.02Mbps, the theoretical

maximum achievable throughput on TCP layer is 135.102Mbps. Today's work-

stations usually have a default of TCP windows less than 256K bytes. To take

advantage of high speed networks, TCP window size must be carefully set.

Unlike TCP, User Datagram Protocol (UDP) is an unreliable connectionless

packet delivery protocol. Data is transmitted from sources to receivers without

proper safety mechanisms to ensure that data arrives successfully. UDP does not

have a ow control method. Thus, UDP sources tend to transmit the data as fast

as possible. This often leads to severe network tra�c congestion. Experiments

have proven that UDP has poor throughput in a congestion environment [22].

12

Chapter 3

Source Modeling

3.1 Overview

For decades, source or tra�c modeling has been an active research area. Ana-

lytical modeling of tra�c sources provides the basis of performance analysis and

network design. Usually, empirical data is collected and evaluated to provide the

basis for analytical models. This data represents the behavior of network tra�c.

A mathematical expression is often developed based on the properties observed

from the empirical data. This mathematical model serves as an approximation

for the target tra�c. The model is used to analyze network performance, such as

queue length, queue delay, loss probability, etc. This chapter describes the source

models that were collected from various studies. The source models are telnet,

ftp, MPEG, Videoconference, and WWW. Two generic models are developed for

interactive and bulk transfer applications in Section 3.2.1 and 3.2.2, respectively.

Detailed models and characteristic of each type of tra�c are presented and sum-

marized from Section 3.3 to 3.6. As has been widely observed before, network

tra�c is dominated by a 24-hour pattern. In doing long duration experiments,

13

the hourly-varied tra�c must be taken into consideration. Section 3.1 briey

describes the 24-hour tra�c pattern from di�erent applications.

3.1.1 Variation of Day

The network tra�c has been observed as a function of time and applications.

Network users seems to use the network according to their needs, hour of the

day, and day of the week. In addition, network tra�c is closely related to the

applications. Video, graphic, voice, and data tra�c have di�erent characteristics.

If the network tra�c is measured through the course of the whole day, it varies

from morning to midnight. Figure 3.1 shows the fraction of total connections of

di�erent tra�c types.

telnet

ftp

phone

WWW

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0.12

Time of Day (Hours)

Fr
ac

tio
n

of
 T

ot
al

 C
on

ne
ct

io
ns

Figure 3.1: Mean, relative, hourly session arrival rates for telnet, ftp sessions,
phone connections, WWW requests.

14

As observed from the Figure 3.1, each type of tra�c has its own pattern of

tra�c load from morning to midnight. For an example, telnet connections has

the highest peaks at morning and afternoon where as ftp has an additional peak

at evening. The characteristic of each type of tra�c is briey described as follows

:

� telnet : telnet tra�c has two peak hours around morning and afternoon

hours. Telnet tra�c do not consume network bandwidth as much as other

tra�c types do because it transmits only text data.

� ftp : Unlike telnet tra�c, ftp tra�c has another peak during evening hours.

This is because users are taking the advantage of quiet hours of the net-

work. ftp tra�c has been known as bursty due to its nature of transmitting

multiple large-sized items.

� Telephone : telephone activity has two large peak hours around the morn-

ing and afternoon hours from business use. During lunch hours, phone traf-

�c reduces substantially. During the evening, tra�c increases due to the

residential use.

� WWW : Compared to other tra�c, WWW doesn't vary a lot during the

time of day. This is because WWW tra�c arises from a wider geographical

base..

15

3.2 Generic Tra�c Source

Basically, all the tra�c sources can be categorized into two types : (1) interactive,

and (2) bulk transfer. This section outlines the generic models to describe the

tra�c from interactive and bulk transfer applications. Models on session and call

level of each tra�c type presented in Section 3.2 to 3.6 are developed from these

generic models.

3.2.1 Interactive Tra�c

Interactive applications, like telnet, are dependent upon human behavior and

activities, such as typing speed and user think time. The tra�c pattern is bidi-

rectional. Two time scales are needed to describe the tra�c sources. The call

level models the multi-session behavior, such as the interarrival times and the

duration of each session. The session level models the tra�c patterns, such as

packet interarrival times and packet sizes, within each single session.

Call Level

The call level consists of two models. They are :

� Session Interarrival Time : the interarrival time between the sessions.

� Session Duration : the duration of login time or holding time of each session

or call.

Session Level

The session level contains two models to describe the variance within each con-

nection. They are :

16

Session

Size

Packet

Duration

Setup

Session

Setup

Call

Session

Interarrival Time

Packet

Interarrival Time

Figure 3.2: Interactive Tra�c Setup

� Packet Interarrival Time : the interarrival time of packets within a single

session.

� Packet Length or Packet Size : the size of each packet within a single

session.

3.2.2 Bulk Transfer Tra�c

The amount of data, which is usually transferred by applications like ftp, VBR

video, and WWW browsers, is more signi�cant in one direction compared to the

other. Unlike interactive applications, the characteristics of the generated tra�c

are mostly dependent on the network and host con�guration parameters. For

example, the maximum packet size of the ftp tra�c is limited by the Maximum

Transfer Unit (MTU) size of the hosts. The duration of each session is dominated

by the network's link rate. The faster the link rate, the shorter the duration of

17

each session. Di�erent network capacities will have di�erent performance for bulk

transfer tra�c.

Item

Setup

Call
Interarrival Time

Session/Request

Number Of

Size

Setup

Session

Items

Figure 3.3: Bulk Transfer Tra�c Setup

Call Level

The call level for bulk transfer tra�c consists of one model.

� Session or Request Interarrival Time : the interarrival time between the

sessions or requests.

Session Level

The session level for bulk transfer tra�c consists of two models.

� Number Of Items : the number of items that needed to be transferred.

� Item/File/Document Size : the size of the item or �le or document needed

to be transferred.

18

3.3 TELNET

In [1], [2], and [3], the models associated with TELNET connections using the

collected LBL1 telnet test datasets are presented. These datasets contain 2.5 mil-

lion WAN TCP connections. There are four di�erent models for telnet protocol

:

� Session Interarrival Times (in seconds).

� Session Duration (in seconds).

� Packet Interarrival Times (in seconds).

� Packet Size (in bytes).

Figure 3.4 briey describes the setup of the TELNET tra�c.

Since the random variables associated with the models described above have

a large range of values, the computed mean and standard deviation are greatly

skewed by the largest of the values. As a result, log2x logarithmic transformation

is used to reduce the range of input values.

3.3.1 TELNET Call Level

TELNET Session Interarrival Times

The pattern of TELNET session arrivals is dominated by a 24-hour pattern as

shown in Figure 3.1. Within one-hour intervals, TELNET session arrivals can be

well-modeled by a homogeneous Poisson process with �x hourly rates. In other

words, each of these arrivals reects an individual user starting a new session.

1LBL : Lawrence Berkeley Lab

19

Call

Size

Packet

Packet

Duration

TELNET Session

TELNET Session

Interarrival Time

Interarrival Time
Session

Setup

Setup

Figure 3.4: TELNET Tra�c Setup

The session interarrival time is exponentially distributed. The probability density

function of exponential distribution is shown below.

fX(x) = �e��x ; � = 1=mean

X is the interarrival time between two sequential TELNET sessions. The

mean, which is 1=�, is adjusted to follow arrival rate at the corresponding hours

of the day shown in Figure 3.1.

TELNET Session Duration

Duration is the telnet connection time between login and logout. The duration

�ts into a simple log-normal distribution. From the LBL datasets, the log-mean

varied from 7.67 to 8.03 and the log-standard deviation varied from 2.83 to 3.02.

For the �xed model, the mean = log2 (240) = 7.91 and the standard deviation =

20

log2 (7.8) = 2.96. The unit is seconds. Below is the probability density function

of log-normal distribution, where X is the session duration of telnet in seconds.

fX(x) =
1

p
2��x

e�
1

2�2
[log2(x)�m]2 ; 7:67 � m � 8:03

; 2:83 � � � 3:02

3.3.2 TELNET Session Level

TELNET Packet Interarrival Times

The packet interarrival times within a TELNET session do not follow the pattern

of exponential distribution. Instead, they �t a Pareto distribution with shape

parameter � � 0:9. The traces show that the distribution is heavy-tailed [3]. The

packet interarrival time distribution from tcplib follows the pattern in Figure 3.5

interarrival time distribution from tcplib follows the pattern in Figure 3.5. The

X-axis is expressed in log2 scale.

−2 0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lg Packet Interarrival Time (in seconds)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 3.5: TELNET packet interarrival time distribution from tcplib

21

TELNET Packet Size

The TELNET packets are mostly 1-byte packets due to human typing. More

than 60% of packets are 1-byte in length[4][5]. The packet size distribution in

the 13 million TELNET connections from tcplib[5] follows the pattern in Figure

3.6. The X-axis is expressed in log2 scale.

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lg Packet Size (in bytes)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 3.6: TELNET packet size distribution from tcplib

22

3.4 FTP (File Transfer Protocol)

The authors [1] [2] [3] describe the FTP connections in several di�erent models.

Figure 3.7 describes the setup of the FTP tra�c. Compared to TELNET tra�c

setup (Figure 3.4), the ftp doesn't have the duration and item interarrival time

setups. This is because the duration of each ftp session is dependent upon the

network capacity, such as link rate. The faster the link rate, the more items the

network can transfer in the same amount of time.

Session

FTP Session

Interarrival Time
Call

Setup

Size

Item

Number

Of Items

Setup

Figure 3.7: FTP Tra�c Setup

3.4.1 FTP Call Level

FTP Session Interarrival Times

Like TELNET session arrivals, FTP session arrivals can be modeled by a Poisson

process within one-hour intervals. As a result, the interarrival time between two

FTP sessions is exponentially distributed. The pattern is dominated by the 24

hour pattern as shown in Figure 3.1. The FTP arrivals have a similar hourly

pro�le like TELNET. However, it has higher arrival rates during the evening

hours while presumably users take advantage of lower networking delays. The

23

probability density function of exponential distribution is shown below.

fX(x) = �e��x ; � = 1=mean

X is the interarrival time (in seconds) between two ftp sessions. The mean,

which is 1=�, is adjusted to follow arrival rate at the corresponding hour of the

day shown in Figure 3.1.

3.4.2 FTP Session Level

FTP Number Of Items

During a single FTP session, there are multiple data transfers. Each data transfer

refers to the transfer of an item. The distribution of number of transfered items

per FTP session from tcplib[5] is shown in Figure 3.8. The x-axis is the log2 value

of the number of items. The mean of FTP Number of Items is 7.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lg Number of Items

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 3.8: FTP Number Of Items distribution from tcplib

24

FTP Item Size

FTP Item Size model the bytes transfered during a FTP data transfer. This type

of connection can be modeled using a log-normal distribution. The distribution

of item size from tcplib[5] is shown in Figure 3.9. The x-axis is the log2 value of

the item size. The mean of FTP Item Size is 50K bytes.

2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lg FTP Item Size (bytes)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 3.9: FTP Item Size distribution from tcplib

25

3.5 VBR Video Tra�c

Broadband integrated networks are expected to carry substantial portions of the

video services. Accurate source modeling of VBR services is essential to develop

a network that achieves pre-de�ned quality of services and cost-e�ciency.

Figure 3.10 provides a general picture of the video tra�c setup on session

level.

Setup

Size

Constant Frame

Variable Frame

Interarrival Time

Session

Figure 3.10: Video Tra�c Setup

Generally, there are two types of video tra�c : (1) Teleconference video

stream, and (2) MPEG video stream. Each of these video streams have di�er-

ence characteristics based on its nature of object motions and use of compression

algorithms. NetSpec 3.0 is capable of producing both video tra�c streams as

speci�ed.

3.5.1 Video Teleconference

Video Teleconference sequences do not have scene changes or scene cuts and have

only moderate motion.

26

Frame Interarrival Times

The frame interarrival time is the direct inverse of the frame rate. The interarrival

time is a constant value. For National Television Standards Committee (NTSC)

standard systems, the interframe period is 33 milliseconds (30 frames/sec). For

PAL2 standard systems, the interframe period is 40 milliseconds (25 frames/sec).

A rate of 25 to 30 frames/sec will produce high quality video stream that requires

a large portion of network bandwidth. For video teleconference, high frame rate

is not usually required since the objects on screen have only moderate motions.

Typical conference calls with high compression technique that produce acceptable

quality often only require 5 to 15 frames/sec rates. Generally, 12 frame/sec (83

milliseconds/frame) is commonly used.

The Number of Cells per Frame

The number of cells per frame follows a gamma distribution[7]. From [7], �̂ =

0:02353 and ŝ = 3:066. The density function of the gamma distribution is given

by

f(t) =
�(�t)s�1

�(s)
e��t ; �̂ = 0:02353

; ŝ = 3:066

where �(s) is the gamma function de�ned as

�(s) =
Z
1

0
ts�1e�tdt:

2Phase Alternation by Line. A television signal standard (625 lines, 50 Hz, 220 V primary
power) used in the United Kingdom, much of the rest of western Europe, several South American
countries, some Middle East and Asian countries, several African countries, Australia, New
Zealand, and other Paci�c island countries.

27

t is the frame size in bytes. The parameters of a gamma distribution are scale

and shape. As a result, scale = 1/�̂ = 42.50 and shape = ŝ � 3. Due to the

implementation and limitation of the gamma random generator, the shape must

be speci�ed as an integer instead of a fraction.

3.5.2 MPEG Video Stream

Compared to video teleconference streams, MPEG3 video streams are more bursty

due to the frequent scene changes and motions. To adequately model a MPEG

video stream, scene length, di�erent frame types (I, P, and B frame types) must

be taken into account. Without considering these factors, the tra�c pattern will

not be fully characterized.

Frame Interarrival Times

In order to produce high quality motion pictures, a high frame rate is often

required. The typical constant interframe period is at least 33 ms (30 frames/sec)

for NTSC standard systems and 40 ms (25 frames/sec) for PAL standard systems.

Scene Length

A video stream consists of several segments such that the sizes of I frames in

each segment are close in value. Each segment corresponds to a part of the movie

with no abrupt view shifts and is referred to as a scene. The length of a scene

(in I frames) can be modeled by a geometric distribution with a mean of 10.5 I

frames[11]. The density function of the geometric distribution is given below. X

3Motion Picture Experts Group

28

is the distribution of scene length in number of I frames.

fX(x) = p(1� p)x ; p =
1

Mean + 1

The size of the �rst I frame in each scene is sampled from a lognormal distri-

bution. Consecutive I frames in the same scene have exactly the same size of the

�rst I frame. The same procedure is applied to each scene.

The Number of Cell per Frame

Compression Pattern (length = 15 frames)

I I

B B B B B B B B B B

P P PP

Figure 3.11: Compression pattern used to generate the video stream

There are three types of coded frames : Intra-coded (I); Prediction (P), and

Bidirectional (B) MPEG frames. These three coded frames are produced in

sequence as shown in Figure 3.11. In other words, the frame type sequence is

IBBPBBPBBPBBPBB. I frame is only sampled once for a scene length. B frame

and P frame are sampled every time they are produced. The sizes of all three

coded frames are found to follow lognormal distributions with di�erent mean

and standard deviation shown in Table 3.1. The density function of a lognormal

distribution is shown below. X is the size of the frames in ATM cells.

fX(x) =
1

p
2��x

e�
1

2�2
[ln(x)�m]2 ; X > 0

29

Frame Type Mean (m) Std. Deviation (�)

I 5.1968 0.2016
P 3.7380 0.5961
B 2.8687 0.2675

Table 3.1: The parameters of I, P, B frame types

3.6 World Wide Web Tra�c

The tra�c of World Wide Web (WWW) has increased exponentially due to the

explosion of the information superhighway. According to the International Data

Corporation, the number of people using the Internet is expected to quintuplet

in just �ve years, from approximately 40 million in 1995 to nearly 200 million by

the year 1999. The number of World Wide Web users is expected to increase by

15 times in the same period[20].

The network tra�c includes a signi�cant portion of tra�c that is generated

by the WWW browsers. The WWW tra�c has been proven to be self-similar

[17]. The model below describes the behavior of the WWW tra�c.

The authors modi�ed the source code of NSCA mosaic in order to collect the

traces and the URL [16]. At that time,Mosaic was the most commonly used web

browser. More recently, many browsers, such as NetScape andMicrosoft Explorer,

are in use. This may result in several di�erences among the characteristics of

the collected data because of the di�erent methods of caching and implemented

document retrieving algorithms.

The study shows that the remote sites account for 70% or greater of the

accesses to the server, and 60% or greater of the bytes transferred [19]. This

implies that the requests and transfers of WWW account for a large portion of

wide area network (WAN) tra�c.

30

Figure 3.12 provides a picture of the WWW tra�c setup. Each request cor-

responds to a data transfer.

Setup

Request

Size

Varible Item (File)

Interarrival Time

Session

Setup

Call

Figure 3.12: WWW Tra�c Setup

3.6.1 WWW Call Level

Mean Inter-Request Times

Depending on the popularity of the sites and the number of users, the system loads

vary. For a 200 user system, the average request load is about 1000 per day. For

a 21000 user system, a peak of 11,000 requests/day is possible. However, some

heavily accessed sites like NCSA4 will have about 400,000 requests/day. Like

TELNET, the WWW tra�c has almost the same 24-hour pattern as shown in

Figure 3.1.

Basically, for a single user, the mean number of requests is 5.75 and standard

deviation of requests is 7.73 over a half-hour period[18]. A homogeneous Poisson

process with a �xed rate can be used to model the tra�c within one-hour intervals.

In other words, the mean inter-request time is exponentially distributed. The

4National Center for Supercomputing Applications

31

probability density function of exponential distribution is shown below.

fX(x) = �e��x ; � = 1=mean

3.6.2 WWW Session Level

Document Transfer Size

The distribution of document transfer size is a Power Law (or Pareto) distribu-

tion. The probability mass function of a pareto distribution is

fX(x) = �k�x���1

and its cumulative distribution function is given by

FX(x) = 1� (
k

x
)� ; 0:40 � � � 0:63

k � 21 kilobytes

Because of the heavy tail resulting from Pareto distribution, WWW tra�c

contributes to a portion of the self-similarity present on network tra�c.

In another paper by M.F. Arlit and C.L. Williamson[19], the �le size distri-

bution is found to be a Pareto distribution with 0:40 � � � 0:63 and the mean

transfer size is � 21 kilobytes.

The high degree of variation in document size is due in part to the wide

variety of document types accessed on the server. These document types are

HTML, images (gif, jpeg, bitmap), Postscripts, audio (wav, au, ai�, aifc), and

video (MPEG, QuickTime). However, the HTML and image �les accounted for

90-100% of the total requests to the server.

32

Chapter 4

Real Time Implementation of

Tra�c Models in NetSpec

Often, the network performance is represented by the maximum throughput from

one point to another point. To fully understand network performance and be-

havior, more realistic testing scenarios are needed, e.g. ones containing multi-

cross connections, is needed. Due to the limitation of the network testing tools,

researchers are limited from performing more accurate testing of network per-

formance. This led to the development of a new network testing tool, NetSpec

[21].

NetSpec is a tool designed to provide convenient and sophisticated support for

experiments testing the functionality and performance of networks. To accurately

characterizing network behavior and performance, NetSpec provides a wide range

of test types. In addition, one of the NetSpec objectives is to support large scale

distributed experiments. It allows multiple connections over a WAN. The network

investigator speci�es a scenario by using the experimental scripting language. The

script describes how the connections are set up and how data are collected from

33

the experiments. The experiments are automatic and reproducible.

This chapter gives a general description of NetSpec 3.0 and presents how

the random tra�c models in Chapter 3 were implemented in NetSpec. The

implementation of each tra�c type is listed from Section 4.2 to Section 4.6.

4.1 Overview of NetSpec 3.0

NetSpec 3.0 contains many test types. It can generate multiple full blast streams,

CBR streams, and VBR streams at user level from multiple machines according

to user speci�cation.

blocksize blocksize

constant OR variable period

constant OR variable constant OR variable

Figure 4.1: NetSpec's Implementation of Burst

Figure 4.1 shows the basic implementation of bursts in NetSpec. In NetSpec,

tra�c is generated by bursts at the user level, e.g., TCP or UDP. Each burst is

modeled by using two parameters : blocksize in bytes and period in milliseconds.

If blocksize and period are assigned to constants, the tra�c is a CBR stream at

application level. Blocksize and period can be a random variable listed in Table

4.1 to generate any type of VBR tra�c at user level. More detailed information

can be found in [21].

Users may specify any random distributions listed in Table 4.1 to blocksize,

repeats and period by de�ning appropriate parameters. Each period will trigger

a burst. Each burst may consist of multiple number of blocks speci�ed by repeats

with a common size de�ned by blocksize. Other than the required parameters

34

listed in Table 4.1, each distribution can be bounded to a range by setting the

optional parameters, min and max. Figure 4.2 is a sample script of NetSpec

3.0 that generates a simple VBR stream. The blocksize uses an exponential

distribution with lambda = 0.000003815 (mean = 1/lambda � 262144 bytes). In

addition, blocksize is bounded to a min of 8 bytes and a max of 1048576 bytes

(1 MEG). The period uses an uniform distribution with a min of 20 milliseconds

and a max of 200 milliseconds. The duration of the test lasts for 10 seconds.

TCP protocol with a window size of 262144 bytes is implemented. The source

hostname is galaga and the sink hostname is hopper in this case.

cluster {

test galaga {

type = burstq (blocksize=exponential(lambda=0.000003815, min=8, max=1048576),

period=uniform(min=20000, max=200000),

duration=10);

protocol = tcp (window=262144);

own = galaga:53000;

peer = hopper:53000;

}

test hopper {

type = sink (blocksize=1048576, duration=10);

protocol = tcp (window=262144);

own = hopper:53000;

peer = galaga:53000;

}

}

Figure 4.2: Example Script of User Level VBR Tra�c

This simple scripting language allows the network investigator to provide

realistic testing of the network capacity.

35

Random Distributions NetSpec 3.0 Naming Required Parameters

Uniform uniform min
max

Exponential exponential lambda
Normal normal mean

stdDeviation
(standard deviation)

Log-Normal logNormal mean
stdDeviation

Geometric geometric mean
Pareto pareto shape
Gamma gamma scale

shape
Telnet Session Interarrival Time telnetSessionInterarrival lambda
Telnet Session Duration telnetSessionDuration mean

stdDeviation
Telnet Packet Interarrival Time telnetPacketInterarrival Fixed Model

Telnet Packet Size telnetPacketSize Fixed Model

FTP Session Interarrival Time ftpSessionInterarrival lambda
FTP Number Of Items ftpNOfItems Fixed Model

FTP Item Size ftpItemSize Fixed Model

Voice Session Interarrival Time voiceSessionInterarrival lambda
Voice Session Duration voiceSessionDuration lambda
Video Teleconference Frame Size videoTeleConferenceFrameSize scale

shape
Video MPEG Frame Size videoMPEGFrameSize sceneLengthMean

Imean
IstdDeviation

Pmean
PstdDeviation

Bmean
BstdDeviation

WWW Request Interarrival Times WWWRequestInterarrival lambda
WWW Item Size WWWItemSize shape

Table 4.1: Available Random Distributions in NetSpec 3.0

36

4.1.1 Implementations of Interactive Tra�c

(in seconds)

Size

Packet

Duration

Setup

Session

Setup

Call

Session

Interarrival Time

Packet

Interarrival Time

Session

Duration Of

The Test

duration = <distribution>

interarrival = <distribution>

duration = <integer>

period = <distribution>

blocksize = <distribution>

NetSpec 3.0 Script Naming

(in microseconds)

(in bytes)

(in seconds)

(in microseconds)

Figure 4.3: NetSpec's Implementation of Interactive Tra�c

Figure 4.3 illustrates the NetSpec Implementation of interactive tra�c that

described by the Figure 3.2. The script names for the corresponding layers are

duration, interarrival, period, and blocksize. Figure 4.4 shows the sample script

that deploys the interactive tra�c (TELNET tra�c in this example).

37

cluster {

test galaga {

type = session (type = burstq (blocksize=telnetPacketSize,

period=telnetPacketInterarrival,

buffer=262144,

duration=telnetSessionDuration(mean=7.91, stdDeviation=2.96)),

interarrival=telnetSessionInterarrival(lambda=0.0000001),

duration=900);

protocol = tcp (window=262144);

own = galaga:53000;

peer = hopper:53000;

}

test hopper {

type = sink (buffer=262144, duration=900);

protocol = tcp (window=262144, rcvlowat=8);

own = hopper:53000;

peer = galaga:53000;

}

}

Figure 4.4: NetSpec script for interactive tra�c

4.1.2 Implementations of Bulk Transfer Tra�c

(in microseconds)
Setup

Call
Interarrival Time

Session/Request

Number Of

Size

Setup

Session

Items

Item

Duration Of

The Test

blocksize = <distribution>

repeats = <distribution>

interarrival = <distribution>

duration = <integer>

NetSpec 3.0 Script Naming

(in bytes)

(integer value)

(in seconds)

Figure 4.5: NetSpec's Implementation of Bulk Transfer Tra�c

The NetSpec script names corresponding to the di�erent bulk transfer tra�c

layers are shown in Figure 4.5. Figure 4.6 shows the sample script to setup bulk

transfer tra�c (FTP tra�c in this example).

38

cluster {

test galaga {

type = burstq (blocksize=ftpItemSize,

repeats=ftpNOfItems,

period=ftpSessionInterarrival(lambda=0.00001),

buffer=262144,

duration=1800);

protocol = tcp (window=262144);

own = galaga:53000;

peer = hopper:53000;

}

test hopper {

type = sink (buffer=262144, duration=1800);

protocol = tcp (window=262144, rcvlowat=8);

own = hopper:53000;

peer = galaga:53000;

}

}

Figure 4.6: NetSpec script for bulk transfer tra�c

4.2 TELNET Implementation in NetSpec

cluster {

test galaga {

type = session (type = burstq (blocksize=telnetPacketSize,

period=telnetPacketInterarrival,

buffer=262144,

duration=telnetSessionDuration(mean=7.91, stdDeviation = 2.96),

interarrival=telnetSessionInterarrival(lambda=0.0000001),

duration=900);

protocol = tcp (window=262144);

own = galaga:42000;

peer = hopper:42000;

}

test hopper {

type = sink (buffer=262144, duration=900);

protocol = tcp (window=262144, rcvlowat=8);

own = hopper:42000;

peer = galaga:42000;

}

}

Figure 4.7: NetSpec script for telnet tra�c

Figure 4.7 shows the NetSpec script for telnet tra�c. The function of the

script names can be clearly explained by Figure 4.3. blocksize, period, telnetSes-

sionDuration and telnetSessionInterarrival are the speci�c build-in distributions

for telnet tra�c.

39

4.3 FTP Implementation in NetSpec

cluster {

test galaga {

type = burstq (blocksize=ftpItemSize,

repeats=ftpNOfItems,

period=ftpSessionInterarrival(lambda=0.00001),

buffer=262144,

duration=1800);

protocol = tcp (window=262144);

own = galaga:42000;

peer = hopper:42000;

}

test hopper {

type = sink (blocksize=262144, duration=1800);

protocol = tcp (window=262144);

own = hopper:42000;

peer = galaga:42000;

}

}

Figure 4.8: NetSpec script for ftp tra�c

Figure 4.8 shows the NetSpec script for FTP tra�c. The lambda = 0.00001

is in microsecond unit. It corresponds to 10 FTP session requests/second. Each

FTP session requests will generate multiple items as de�ned by repeats. Thus,

this FTP script generates an emulated FTP tra�c stream which has a mean of

about 10 requests
second

� 7 items

request
� 50000 bytes

item
� 8 bits

byte
= 28Mbits=sec:

40

4.4 Video MPEG Implementation in NetSpec

cluster {

test galaga {

type = burstq (blocksize=videoMPEGFrameSize(sceneLengthMean=10.5,

Imean=5.1968, IstdDeviation=0.2016,

Pmean=3.7380, PstdDeviation=0.5961,

Bmean=2.8687, BstdDeviation=0.2675),

period=33000,

duration=300);

protocol = tcp (window=262144);

own = galaga:42000;

peer = hopper:42000;

}

test hopper {

type = sink (blocksize=131072, duration=300);

protocol = tcp (window=262144, rcvlowat=8);

own = hopper:42000;

peer = galaga:42000;

}

}

Figure 4.9: NetSpec script for MPEG video stream

Figure 4.9 shows the NetSpec script for MPEG video streams. The frame rate

is speci�ed by period, which is 33msec/frame. This corresponds to 1/0.033 = 30

frames/sec. The frame output sequence is IBBPBBPBBPBBPBB. The means

and standard deviations of each frame are speci�ed by Imean, Pmean, Bmean,

IstdDeviation, PstdDeviation, and BstdDeviation. This script will generate a

single 0.44Mbps MPEG stream. The duration of the test is controlled by duration,

which is 900 seconds.

41

4.5 Video Conferencing Implementation in Net-

Spec

cluster {

test galaga {

type = burstq (blocksize=videoTeleConferenceFrameSize(scale=42.50, shape=3),

period=83000,

duration=600);

protocol = tcp (window=262144);

own = galaga:42000;

peer = hopper:42000;

}

test hopper {

type = sink (buffer=131072, duration=600);

protocol = tcp (window=262144, rcvlowat=8);

own = hopper:42000;

peer = galaga:42000;

}

}

Figure 4.10: NetSpec script for teleconferencing video stream

Figure 4.10 shows the NetSpec script for a single teleconferencing video stream.

The frame rate, inverse of period, is 1/0.083 = 12 frames/sec. The frame size is

represented by blocksize in the script and has a gamma distribution. Thus, scale

and shape are the primary parameters to specify the distribution of the frame

size. This script will generate a single 0.77Mbps teleconferencing video stream.

42

Chapter 5

Validation of Tra�c Models

Implementation

This section presents the validation of each individual tra�c model that has been

implemented in NetSpec 3.0. Each tra�c model is validated by generating its

tra�c using NetSpec from one workstation to another workstation. The emulated

tra�c is then captured by KU's ATM tra�c data collector. This data collector

sends multiple Simple Network Management Protocol (SNMP) queries to the

ATM switches to obtain data from various switch counters for every minute.

The data is collected and stored in KU AAI ATM tra�c database for analysis

purpose. The validation of ftp, WWW, MPEG, and Video Conference tra�c are

presented here.

43

5.1 FTP Models

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

Time (Minutes)

R
at

e
(M

bp
s)

Figure 5.1: Emulated Daily FTP Tra�c

Figure 5.1 is the emulated daily FTP tra�c generated by NetSpec and cap-

tured by KU's ATM data collector. Figure 5.2 is the calculated mean of FTP

tra�c. The NetSpec script is included in Appendix A.1. The tra�c consists of 24

segments. Each segment lasts half an hour. The interarrival rate of FTP session

requests is modeled as an exponential distribution. Each segment has di�erent

value of lambda (�) shown in Table 5.1. The peak hourly average rate of the

whole daily tra�c is set to be 10Mbps. The averages of FTP item and FTP

number of item per connection are 50000 bytes and 7 items. Interarrival rates of

FTP sessions can be easily derived by using the Equation 5.1. By closely exam-

ining the emulated tra�c in Figure 5.1, we can see the it matches the predicted

averages of the curve shown in Figure 5.2.

44

0 5 10 15 20 25
0

5

10

15

20

25

30

Time (Hours)

C
al

cu
la

te
d

M
ea

n
of

 F
T

P
 T

ra
ffi

c
Lo

ad
 (

M
bp

s)

Figure 5.2: Calculated Mean of Daily FTP Tra�c

InterarrivalRate(second=session) = Throughput
Mbits

sec
�

1
bytes

session
� 8 bits

byte

(5.1)

45

Segment No. Interarrival Rate (second/session) Lambda (�)

1 0.8787 0.000001138

2 1.1723 0.000000853

3 1.5060 0.000000664

4 2.1097 0.000000474

5 1.9194 0.000000521

6 1.5060 0.000000664

7 1.0549 0.000000948

8 0.6394 0.000001564

9 0.4794 0.000002086

10 0.3836 0.000002607

11 0.3196 0.000003129

12 0.3014 0.000003318

13 0.3516 0.000002844

14 0.3458 0.000002892

15 0.2670 0.000003745

16 0.2971 0.000003366

17 0.2740 0.000003650

18 0.3638 0.000002749

19 0.5408 0.000001849

20 0.7813 0.000001280

21 0.6592 0.000001517

22 0.6394 0.000001564

23 0.5701 0.000001754

24 0.8969 0.000001185

Table 5.1: Interarrival Rates and lambda for FTP Sessions

46

5.2 WWW Models

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

50

Time (Minutes)

R
at

e
(M

bp
s)

Figure 5.3: Emulated Daily WWW Tra�c

Figure 5.3 is the emulated WWW tra�c generated by NetSpec. Figure 5.4

is the calculated mean of daily WWW tra�c. The NetSpec script is included

in Appendix A.2.. The script contains 24 segments. Each segment is con�gured

to have a duration of 30 minutes. The interarrival time of WWW requests is

modeled as an exponential distribution. The lambdas of each segment listed in

Table 5.2 are calculated to follow the variation of daily usage depicted in Figure

3.1 using the Equation 5.1. WWW items have an average of 95K bytes. Again, if

we closely examine Figure 5.3, we can notice that its average matches the curve

presented in Figure 5.4.

If we compare the emulated tra�c between FTP (Figure 5.1) and WWW

(Figure 5.3), we notice that the WWW tra�c is more bursty than FTP tra�c.

This is because the model of WWW tra�c is using a Pareto distribution, where

as the model of FTP tra�c is using �xed statistics from a table in NetSpec

47

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Time (Hours)

C
al

cu
la

te
d

M
ea

n
of

 W
W

W
 T

ra
ffi

c
Lo

ad
 (

M
bp

s)

Figure 5.4: Calculated Mean of Daily WWW Tra�c

implementation. Unlike FTP tra�c, WWW tra�c consists of many multimedia

transfers, such as graphic, voice, and video. Thus, WWW tra�c shows more

burstiness than FTP tra�c.

48

Segment No. Interarrival Rate (second/request) Lambda

1 0.3625 0.000002759

2 0.3346 0.000002989

3 0.3107 0.000003219

4 0.2899 0.000003449

5 0.2718 0.000003679

6 0.2416 0.000004139

7 0.0217 0.000004599

8 0.1318 0.000007588

9 0.0945 0.000010578

10 0.0870 0.000011498

11 0.0836 0.000011957

12 0.0870 0.000011498

13 0.0821 0.000012187

14 0.0791 0.000012647

15 0.0777 0.000012877

16 0.0725 0.000013797

17 0.0879 0.000011383

18 0.1087 0.000009198

19 0.1318 0.000007588

20 0.1611 0.000006209

21 0.1850 0.000005404

22 0.1933 0.000005174

23 0.2718 0.000003679

24 0.3625 0.000002759

Table 5.2: Interarrival Rates and lambda for WWW Connections

49

5.3 MPEG Models

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

Time (seconds)

R
at

e
(M

bp
s)

Figure 5.5: Emulated Tra�c of 12 MPEG Video Streams

Figure 5.5 is the emulated MPEG tra�c. The tra�c consists of 12 MPEG

streams. The mean throughput for each MPEG stream is about 0.44 Mbits/sec.

The total aggregate throughput is about 5 Mbits/sec. The duration of this test

is about half an hour. The NetSpec script is in Appendix A.3. From Figure 5.5,

we observe that the tra�c varies between 4 and 6 Mbits/sec and has a mean of

about 5 Mbits/sec.

50

5.4 Video Conferencing Models

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

Time (seconds)

R
at

e
(M

bp
s)

Figure 5.6: Emulated Tra�c of 7 Videoconferencing Streams

Figure 5.6 is the emulated Video Conferencing tra�c. The tra�c consists

of 7 video streams. The mean throughput for each video stream is about 0.7

Mbits/sec. The total aggregate throughput is about 5 Mbits/sec. The duration

of the test is about half an hour. The NetSpec script is in Appendix A.4. The

tra�c shown in Figure 5.6 varies between 4 and 6 Mbits/sec and has a mean of

about 5 Mbits/sec.

51

Chapter 6

WAN Experiments

ATM experiments are often limited to point-to-point maximum throughput mea-

surements. These experiments are designed to address the maximum capacity

of the link rate. However, maximum throughput is only part of network perfor-

mance. Networks are multi-user and multi-tra�c type environments. To fully

understand network performance, congestion scenarios must be taken into con-

sideration when doing network testing. This chapter presents the ATM WAN

congestion experiments using emulated tra�c to evaluate other network per-

formance factors, such as delay jitter, and packet loss. The emulated tra�c

represents the tra�c generated by regular network users. In addition, the combi-

nation of transport-level ow-control (TCP) and ATM level tra�c shaping tech-

nique (Cell Pacing) is also evaluated. There were several network changes after

September 1997 for the AAI network. It is interesting to evaluate how network

changes impact the performance. Therefore, several experiments were chosen to

rerun. Comparison of network performance before and after the network changes

is presented in section 6.5.

Figure 6.1 shows the basic network con�guration for the tra�c contention

52

Hostname : arl.atm.ittc.ukans.edu

FORE ASX 200
ARL Switch

AAI

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

ATM Interface : DEC ATMworks-750

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

ATM Interface : DEC ATMworks-750

Hostname : nrl.atm.ittc.ukans.edu

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

ATM Interface : DEC ATMworks-750

Hostname : nccosc.atm.ittc.ukans.edu

FORE ASX 200BX
NCCOSC Switch

ATM Device Driver : Digital Unix 4.0 standard

ATM Device Driver : Digital Unix 4.0 standard

ATM Device Driver : Digital Unix 4.0 standard

GSD Switch

OC-3

FORE ASX 200

ATM Interface : DEC ATMworks-750

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

ATM Device Driver : Digital Unix 4.0 standard

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

Hostname : hopper.atm.ittc.ukans.edu

ATM Interface : DEC ATMworks-750
ATM Device Driver : Digital Unix 4.0 standard

Hardware Platform : DEC Alpha AXP-3000/700
Operating System : Digital Unix V4.0

ATM Interface : DEC ATMworks-750
ATM Device Driver : Digital Unix 4.0 standard

Hostname : galaga.atm.ittc.ukans.edu

ITTC Switch
Target Traffic Flow
- Constant Bit Rate Stream

- WWW Traffic
- Teleconferencing Video Streams

Background Traffic

- MPEG Video Streams
- FTP Traffic
Background Traffic

Hostname : elmer.atm.ittc.ukans.edu

S_ForeThought_4.1.0 (1.74)

S_ForeThought_4.1.0 (1.74)
FORE ASX 200BX

NRL Switch

S_ForeThought_4.1.0 (1.74) S_ForeThought_4.1.0 (1.74)

S_ForeThought_4.1.0 (1.74)

TIOC Switch
FORE ASX 1000

FORE ASX 1000

S_ForeThought_4.1.0 (1.74)

OC-12

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

OC-3

Figure 6.1: Network Con�guration for ITTC to AAI Connections

experiments. A DEC Alpha AXP-3000/700 workstation (galaga.atm) at Infor-

mation & Telecommunication Technology Center (ITTC) at Lawrence, Kansas is

con�gured to generate emulated FTP tra�c and multiple MPEG video streams

as speci�ed in Table 6.1 . The destination of these ows are a similar workstation

(nrl.atm) at Naval Research Laboratory (NRL-DC), Washington, D.C.. Another

DEC Alpha AXP-3000/700 workstation (hopper.atm) at ITTC is also con�gured

to generate emulated WWW tra�c and multiple teleconferencing video streams

as speci�ed in Table 6.1 where the destination for these ows are a similar work-

station (arl.atm) at Army Research Laboratory at Washington, D.C.. These two

pairs of con�guration (galaga at ITTC to NRL-DC, hopper at ITTC to ARL)

are responsible to generate multi-type background tra�c using the TCP protocol.

53

Two con�gurations of background tra�c are proposed. The �rst con�guration

of background tra�c will have low aggregate throughput (25Mbps), whereas the

second one has higher aggregate throughput (60Mbps). The individual through-

put of each type of tra�c is shown in Table 6.1. These two con�gurations allow us

to study the impact of di�erent load of background tra�c on the target streams.

The tra�c ows listed in Table 6.1 are referred to as the Background Tra�c

throughout the document. The NetSpec scripts to generate 25Mbps and 60Mbps

Background Tra�c are attached in Appendix B.3 and B.4.

Background Tra�c Tra�c Types Mbps Total (Mbps)
25 Mbps WWW 10

FTP 5
MPEG 5

Video Conference 5 25

60 Mbps WWW 30
FTP 10
MPEG 10

Video Conference 10 60

Table 6.1: Con�guration of Contention Tra�c Rate

The FTP and WWW tra�c are characterized as bursty tra�c since they

consist of large amounts of data generated by a download request. These bursty

sources often cause severe network congestion. As shown in Figure 6.1, an OC-12

link exists from ITTC switch to TIOC switch. However, there is an OC-3 link

from TIOC switch to GSD switch. When tra�c ows from ITTC into AAI cloud,

a rate mismatch situation is created. Thus, the contention of tra�c occurs in the

TIOC switch.

Certain application or tra�c intended for certain users may by more critical,

whether the tra�c is bandwidth-hungry or not. To represent this type of tra�c, a

54

DEC Alpha AXP-3000/700 workstation (elmer.atm) at ITTC will generate tra�c

ows at various rates to a similar workstation (nccosc.atm) at Naval Command

Control and Ocean Surveillance Center (NCCOSC), San Diego, California, using

TCP and UDP protocols de�ned in each experiment under the contention of the

background tra�c mentioned above. The tra�c ows are constant bit rate (CBR)

streams at user level (TCP or UDP) from 5Mbps to 30Mbps in an increment of

5Mbps (i.e. 5,10,15,20,25,30) listed in Table 6.2. This allows us to study how the

user level CBR target ows are a�ected at di�erent source rate. Throughout the

document, the tra�c ows are referred to as the Target Flows. The performance

of the target ows under the impact of bursty background tra�c is evaluated

and studied. The NetSpec scripts to generate TCP and UDP target ows from

5Mbps to 30Mbps are attached in Appendix B.1 and B.2.

Target Flow Blocksize (bytes) Period (ms) Rate (Mbps)
5Mbps 9140 14 5.22
10Mbps 18280 14 10.45
15Mbps 27420 14 15.67
20Mbps 36560 14 20.89
25Mbps 45700 14 26.11
30Mbps 54840 14 31.34

Table 6.2: Target Flow Throughput

6.1 Performance Metrics

Two performance metrics are de�ned and evaluated for each experiment. They

are listed as follow :

� Standard Deviation of Network Jitter (ms).

Tra�c congestion often occurs when multiple bursty streams compete for

55

the same destination. This results in cells being dropped in ATM net-

works. For TCP network connections, lost data will be retransmitted when

the TCP timer expires. However, this introduces inconsistent data arrival

intervals at the receiving ends, which is referred to as delay jitter or net-

work jitter. User applications only see packet level performance, not ATM

cell level performance. Some time-sensitive applications, such as video and

voice, are not tolerant of such delay jitter introduced by networks. For these

experiments, delay jitter of the target ows at packet level is evaluated.

Timestamp and sequence numbers of each packets are recorded both at the

transmitting and receiving ends. To derive the delay jitter, clock synchro-

nization is not necessary. This is because jitter is calculated as a di�erence

of time for two sequential packets. The formula to calculate delay jitter is

listed in Equation 6.1.

J(n) = [TR(n)� TR(n� 1)]� [TT (n)� TT (n� 1)] (6.1)

J(n) is the delay jitter of nth packet. TR(n) is the received timestamp of

nth packet. TT (n) is the transmitted timestamp of nth packet. Delay jitter

is de�ned as the di�erence of received timestamps minus the di�erence of

transmitted timestamps. As a result, there are n-1 delay jitter for a total

of n packets. To represent the variation of delay jitter, standard deviation

is used.

� Percentage of UDP Segment Losses.

Unlike TCP, UDP does not ensure data is safely received at the other end.

If cells are dropped because of tra�c congestion, other cells in the same

UDP packet are discarded due to incomplete error at the receiving host.

56

For the UDP experiments, the loss of UDP packets are evaluated. By co-

relating the records of UDP segments using the sequence number, we can

easily derive the UDP segment losses. The equation 6.2 is used to calculate

percentage of segment losses.

SegmentLosses(%) = NumberofMissingSegments

NumberofTransmittedSegments
� 100% (6.2)

The design of transport-level ow control schemes, such as TCP, is to have

better control of the tra�c streams being transmitted in a resources-shared net-

work environment. However, especially in high-speed networks, the ow control

schemes alone are not e�cient enough. To optimize the network resources and to

achieve better performance, the combination of ow control and tra�c shaping

should be used.

The idea of cell level tra�c shaping is to alter the tra�c characteristics of the

stream of cells on every virtual connection in order to optimize the use of network

resources. The ow of ATM cells through each connection is regulated so as to

stay within the agreed limits. Short bursts of data are bu�ered on the board and

then released at a controlled rate. Several mechanisms, such as leaky-bucket,

have been adapted to control the ow of ATM cells. Often, the burstiness of the

tra�c is the major cause of congestion and cell drops in ATM networks. One of

the simplest ways is to limit the peak rate of all the virtual connections such that

the network resources are optimized. Cell level pacing allows the ATM cells are

transmitted at a �xed rate into the network. Figure 6.2 illustrates the e�ect of

cell level pacing on user tra�c.

Three cases are de�ned below to study the e�ect of tra�c shaping.

� No Cell Level Pacing.

57

Time

Traffic Shaping

Network

Time

R
at

e

User Traffic

Figure 6.2: E�ect of Cell Level Pacing

Each workstation is con�gured to fully utilized the OC-3 bandwidth. In

other words, all the hosts are able to transmit back-to-back cells into the

network and no tra�c shaping is applied. The results are presented in

section 6.2.

� Cell Level Pacing on Target Flows.

The workstation (elmer.atm) that transmits target ows is con�gured to

transmit cells at a �xed rate. In other words, cells of target ows are evenly

transmitted into the network. Tra�c shaping is applied to the target ows.

The results are presented in section 6.3.

� Cell Level Pacing on Background Tra�c.

The workstations (galaga.atm, hopper.atm) are con�gured to transmit cells

at a �xed rate. In other words, cells of background tra�c are evenly trans-

mitted into the network. Tra�c shaping is applied to the background tra�c.

Summary of results can be found in section 6.4.

58

6.2 No Cell Level Pacing

5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

180

200

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (6/4/97)
25Mbps Background Traffic (6/4/97)
60Mbps Background Traffic (6/4/97)

Figure 6.3: Standard Deviation (ms) of Network Jitter of TCP Target Flows from
ITTC to AAI cloud

In this experiment, each workstation was con�gured to fully utilize the OC-3

bandwidth. In other words, all the hosts were able to transmit back-to-back cells

at OC-3 rate into the network.

Figure 6.3 shows the standard deviation of delay jitter of packets from the

target ows using TCP protocol. The X-axis is the target ow throughput. The

Y-axis is the standard deviation of network jitter in milliseconds. The solid line is

the result of the target ow test alone. The workstation (elmer.atm) transmitted

the target ows from 5Mbps to 30Mbps in an increment of 5Mbps as speci�ed

in Table 6.2 to nccosc.atm. The objective of this test was intended to establish

the baseline for comparison when there was no tra�c contention in the network.

We observed no variation of interarrival time for TCP segments. However, note

that the standard deviation is not zero in Figure 6.3 even when no other cross

59

tra�c existed on the same path during the measurements. This is because the

workstation's timestamps at application level have a resolution of 1ms. Therefore,

the solid line in Figure 6.3 is not on the zero line.

The dashed line is the result of 25 Mbps Background Tra�c test. In this

test, we added 25Mbps Background Tra�c into the network. The workstations

galaga.atm and hopper.atm were con�gured to generate a total of 25Mbps Back-

ground Tra�c as speci�ed in Table 6.1 while elmer.atm transmitted the target

ows from 5Mbps to 30Mbps. Since the background tra�c consisted of bursty

streams and target ows were transmitted as chunks of back-to-back cells to the

same destination, tra�c congestion occurred. If some cells are lost in the network,

the source will retransmit the whole TCP packet when the TCP retransmission

timer expires. This introduces the delay in the delivery of the data. From the

Figure 6.3, we can see that the standard deviation of network jitter of target ows

increases linearly up to 120ms as the rate of target ows increases from 5Mbps to

30Mbps. The 25Mbps Background Tra�c competes with the target ows. Thus

cells are dropped at the congestion point and some of the TCP packets of target

ows have to be retransmitted. As a result, delay of data arrival is introduced.

The dashed line with asterisks is the result of 60Mbps Background Tra�c test.

The aggregate throughput of background tra�c was increased from 25Mbps to

60Mbps as speci�ed in Table 6.1 to show how Background Tra�c a�ected the

target ows. As the throughput of target ows increases from 5Mbps to 30Mbps

along with the 60Mbps Background Tra�c over the same link, the standard

deviation of network jitter as shown in Figure 6.3, increases up to about 190 ms.

Following the slopes of the curves, we conclude that the 60Mbps Background

Tra�c introduces more tra�c contention and cells are more likely to be dropped.

Thus, the standard deviations of network jitter for target ows in the 60Mbps

60

test are expected to b higher than those in the 25Mbps test.

5 10 15 20 25 30

0

100

200

300

400

500

600

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (7/19/97)
25Mbps Background Traffic (7/26/97)
60Mbps Background Traffic (7/26/97)

Figure 6.4: Standard Deviation (ms) of Network Jitter of TCP Target Flows from
AAI cloud to ITTC

Network connections are directional. The forward and backward paths of a

network connection, especially in WAN, often encounter tra�c congestion at dif-

ferent geographical locations within the networks. This asymmetrical network

structure may permit better performance for transmission for one direction com-

pared to the other one. In the next test, the directions of background tra�c and

target ows were reversed. In other words, the tra�c streams owed from AAI

cloud to ITTC site. This would create the congestion point inside the AAI cloud.

Figure 6.4 shows the standard deviation of network jitter of TCP target ows

from AAI cloud to ITTC. Note that the standard deviation increases proportion-

ally to the rate of target ow and background tra�c. However, it also shows that

the target ows exhibit more tra�c congestion when the congestion is inside the

AAI cloud. By comparing the results of Figure 6.4 and Figure 6.3, the target

ows have better performance when the connection is going from ITTC to AAI

61

cloud. This can be explained by the large bu�er setting in TIOC's FORE ASX

1000 switch and the OC-12 to OC-3 situation on the direction of forward path

from TIOC to GSD switch. When the tra�c ows from the three workstations

at ITTC to TIOC, the OC-12 connection is able to absorb the 3 smaller OC-3

tra�c streams even at the full bandwidth rate. In addition, the large bu�er at

TIOC switch will smooth the bursty tra�c from the OC-12 to OC-3 bottleneck.

All of these factors lead to better network performance under the scenario of the

TIOC switch as the congestion point.

62

5 10 15 20 25 30
0

1

2

3

4

5

6

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (5/22/97)
25Mbps Background Traffic (5/22/97)
60Mbps Background Traffic (5/22/97)

Figure 6.5: Standard Deviation (ms) of Network Jitter of UDP Target Flows
from ITTC to AAI cloud

Often, the retransmission of data will expand transient period of tra�c con-

gestion in networks since more data is transmitted. In addition, retransmission

is not necessary for some applications, such as real-time video and voice streams.

To examine the delay jitter without the e�ect of retransmission, UDP protocol

was used on target ows. UDP is also considered to evaluate the packet loss

characteristic of these networks. In the next test, we used the UDP protocol

instead of TCP protocol for target ows while maintaining the same network

con�gurations.

Figure 6.5 is the result of using UDP protocol on target ows for the ITTC to

AAI cloud scenario. The standard deviation of network jitter increases slowly as

the rate of target ows increases for two Background Tra�c tests. However, the

delays do not vary as much when compared to TCP result in Figure 6.3. This is

because there is not retransmission for UDP. Once some cells of UDP packets are

dropped in the network due to tra�c congestion, the whole UDP segment will

63

be discarded at the receiving end. However, note that the standard deviation

increased from about 1.5ms to 3ms. The slight increase of the standard deviation

is caused by the long delay of queueing due to the increase in the rate of target

ows and the background tra�c streams. Actually, the long queueing delay is

also included in the TCP results shown in Figure 6.3, but the delay introduced

by retransmission of data is more dominant.

5 10 15 20 25 30

0

5

10

15

20

25

30

35

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (7/20/97)
25Mbps Background Traffic (8/4/97)
60Mbps Background Traffic (8/21/97)

Figure 6.6: Standard Deviation (ms) of Network Jitter of UDP Target Flows
from AAI cloud to ITTC

Figure 6.6 shows the standard deviation of network jitter of UDP target ows

from AAI cloud to ITTC. Compared to the result of forward path from ITTC

to AAI, the result of reserved path shows signi�cant increases in the delay jitter.

The standard deviation has increased from a maximum of 3ms on forward paths

to a maximum of 30ms on reserved paths. This increase obviously depicts the

asymmetrical network performance in the direction of connections because of the

change of tra�c congestion point.

64

5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Flow Throughput (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)

No Background Traffic (5/22/97)
25Mbps Background Traffic (5/22/97)
60Mbps Background Traffic (5/22/97)

Figure 6.7: Percentage of UDP Segment Losses of UDP Target Flows from ITTC
to AAI cloud

Since UDP does not retransmit the lost data, UDP packets are discarded at

the receiving ends when some cells are dropped. Figure 6.7 shows the losses of

UDP segments of target ows in percentage for the connection originated from

ITTC to AAI cloud. The target ows su�er up to 1.3% of segment losses. As

expected, the percentage of losses is proportional to the standard deviation of

network jitter.

65

5 10 15 20 25 30

0

5

10

15

20

25

Target Flow Throughput (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)

No Background Traffic (7/20/97)
25Mbps Background Traffic (8/4/97)
60Mbps Background Traffic (8/21/97)

Figure 6.8: Percentage of UDP Segment Losses of UDP Target Flows from AAI
cloud to ITTC

Figure 6.8 shows the percentage of UDP segment losses on the reserved path.

A maximum of 22% UDP packet loss was observed. As expected, the target ows

su�er higher losses which are proportional to the delay jitter shown in Figure 6.6.

In this case, the packet losses are signi�cant.

66

6.3 Cell Level Pacing on Target Flows

To study how cell level pacing a�ects network performance, the host interface

of elmer.atm was con�gured to transmit cells at a �xed rate. All cells were

periodically transmitted from elmer.atm. The peak cell rates of the host interface

were con�gured as listed in Table 6.3 for each target ow. Notice that the pacing

rates in column 3 are slightly higher than the NetSpec throughput in column 2

of Table 6.3. This is to include the overhead of TCP layer, UDP layer, AAL5,

and ATM layer.

Target NetSpec Throughput (Mbps) Pacing Rate (Mbps)
Flow at User Level at Host Interface
5Mbps 5.22 6.267
10Mbps 10.45 12.535
25Mbps 15.67 18.802
20Mbps 20.89 25.069
25Mbps 26.11 31.336
30Mbps 31.34 37.604

Table 6.3: Pacing Rates for Target Flows

The same set of tests described in the previous section were repeated and the

results were compared to examine the e�ect of cell level pacing in all cases. Figure

6.9 is the TCP result of cell level paced target ows for the ITTC to AAI cloud

experiment. The background tra�c were still transmitted as bursty streams and

were able to peak at OC-3 bandwidth. However, the cells of target ows were

transmitted at a �x interval instead of groups of back-to-back cells. Figure 6.9

implies that the existence of Background Tra�c does not induce any degradation

on performance of target ows. The nearly at lines in Figure 6.9 indicate that

the target ows did not su�er any tra�c contention once cell level pacing was

used on target ows. No cell losses on target ows were reported. However, cell

67

5 10 15 20 25 30
−20

0

20

40

60

80

100

120

140

160

180

200

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (6/22/97)
25Mbps Background Traffic (6/23/97)
60Mbps Background Traffic (6/23/97)

Figure 6.9: Standard Deviation (ms) of Network Jitter of Cell Level Paced TCP
Target Flows from ITTC to AAI cloud

losses were observed on Background Tra�c.

On the contrary, the result of reversed path in Figure 6.10 shows tremendous

increase in delay jitter of target ows once cell level pacing technique is used.

The standard deviation jumps from 350ms of no cell level pacing to 600ms of cell

level pacing on target ows. This indicates that the cell level pacing on the target

ows does not necessarily improve the performance.

68

5 10 15 20 25 30

0

100

200

300

400

500

600

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (7/19/97)
25Mbps Background Traffic (8/21/97)
60Mbps Background Traffic (8/21/97)

Figure 6.10: Standard Deviation (ms) of Network Jitter of Cell Level Paced TCP
Target Flows from AAI cloud to ITTC

Similar result was observed for the UDP tests shown in Figure 6.11. The

increase of Background Tra�c from 25Mbps to 60Mbps does not have any e�ect

on target ows. In addition, no UDP segments were lost as observed from the

Figure 6.12. In other words, target ows, either using UDP or TCP, do not su�er

tra�c contention once cell level pacing is used for the paths from ITTC to AAI

cloud.

69

5 10 15 20 25 30
0

1

2

3

4

5

6

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (6/5/97)
25Mbps Background Traffic (6/18/97)
60Mbps Background Traffic (6/18/97)

Figure 6.11: Standard Deviation (ms) of Network Jitter of Cell Level Paced UDP
Target Flows from ITTC to AAI cloud

For UDP connection from AAI cloud to ITTC shown in Figure 6.13, the delay

jitter depicts the same behavior as that observed on the target ows encountered

in TCP connection. The standard deviation of UDP connection increases from

2ms of no cell level pacing to 23ms of cell level pacing on target ows. Similarly,

the percentage of UDP segment losses increases proportionally to the variation

of delay jitter.

70

5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Flow Throughputs (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
m

s)

No Background Traffic (6/5/97)
25Mbps Background Traffic (6/18/97)
60Mbps Background Traffic (6/18/97)

Figure 6.12: Percentage of Segment Losses of Cell Level Paced UDP Target Flows
from ITTC to AAI cloud

6.4 Cell Level Pacing on Background Tra�c

In the following tests, the background tra�c streams instead of target ows were

paced. Target ows were transmitted as groups of back-to-back cells, where as

the Background Tra�c were transmitted as evenly cell paced streams. The host

interfaces on both galaga.atm and hopper.atm were con�gured to have the peak

cell rates as listed in Table 6.4 and Table 6.5 for 25Mbps and 60Mbps Background

Tra�c tests, respectively.

The values of target ows listed in Table 6.3 were subtracted from the OC-3

bandwidth and then proportionally divided the remaining bandwidth and as-

signed to the two Background Tra�c pairs. Therefore, I explicitly and manually

set the maximum transmission rate for the two Background Tra�c links. The

background tra�c in this network con�guration can also be viewed as using an

ideal Available Bit Rate (ABR) service. In ABR service, connections are con�g-

71

5 10 15 20 25 30

0

5

10

15

20

25

30

35

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (8/10/97)
25Mbps Background Traffic (8/4/97)
60Mbps Background Traffic (8/21/97)

Figure 6.13: Standard Deviation (ms) of Network Jitter of Cell Level Paced UDP
Target Flows from AAI cloud to ITTC

ured to utilize the maximum available amount of network resources (bandwidth

in this case).

72

5 10 15 20 25 30

0

5

10

15

20

25

Target Flow Throughput (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)

No Background Traffic (8/10/97)
25Mbps Background Traffic (8/4/97)
60Mbps Background Traffic (8/21/97)

Figure 6.14: Percentage of Segment Losses of Cell Level Paced UDP Target Flows
from AAI cloud to ITTC

Figure 6.15 and 6.16 are the TCP results of target ows with cell level paced

Background Tra�c for the forward (from ITTC to AAI cloud) and reversed (from

AAI cloud to ITTC) paths. Compared to the TCP results of no cell level pacing

in Figure 6.3 and 6.4, they show that the cell level paced background tra�c does

improve end-to-end performance even though the target ows are transmitted as

groups of back-to-back cells. This is because a certain bandwidth has been re-

served for the target ows. The Background Tra�c only consumes the remaining

bandwidth over the same link. This demonstrates the potential e�ciency of ABR

service in a "realistic" network.

73

Target ARL to hopper NRL to galaga
Flow WWW and TeleConferencing FTP and MPEG
5Mbps 87.55Mbps 57.70Mbps
10Mbps 83.79Mbps 55.19Mbps
15Mbps 80.03Mbps 52.68Mbps
20Mbps 76.27Mbps 50.18Mbps
25Mbps 72.51Mbps 47.67Mbps
30Mbps 68.75Mbps 45.16Mbps

Table 6.4: 25Mbps Background Tra�c Pacing Rates

Target ARL to hopper NRL to galaga
Flow WWW and TeleConferencing FTP and MPEG
5Mbps 97.50Mbps 47.75Mbps
10Mbps 93.32Mbps 45.66Mbps
15Mbps 89.14Mbps 43.57Mbps
20Mbps 84.96Mbps 41.48Mbps
25Mbps 80.79Mbps 39.39Mbps
30Mbps 76.61Mbps 37.31Mbps

Table 6.5: 60Mbps Background Tra�c Pacing Rates

For UDP tests of forward and reversed paths, the results shown in Figure 6.17

and 6.18 indicate that the standard deviation of network jitter remains constant

as the rate of target ow increases steadily. However, a small percent of UDP

packet losses is reported as shown in Figure 6.19 and Figure 6.20. Notice that the

results in Figure 6.17 have much higher values of standard deviation (about 5ms)

compared to Figure 6.11. This is because several scripts were running on the

workstations to capture the statistics on the host interface. Thus, a higher CPU

load was introduced. Consequently, the delay of processing is increased on the

workstations. This illustrates the potential impact of the host state on network

performance. This set of experiments was the �rst set of all the experiments and

74

5 10 15 20 25 30
−20

0

20

40

60

80

100

120

140

160

180

200

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (6/4/97)
25Mbps Background Traffic (7/3/97)
60Mbps Background Traffic (7/9, 7/10/97)

Figure 6.15: Standard Deviation (ms) of Network Jitter of TCP Target Flow
with Cell Level Paced Background Tra�c from ITTC to AAI cloud

was done on 5/22/971. The capturing scripts were later modi�ed and enhanced.

No similar problem was observed for the rest of the experiments.

1Please refer to the Table 7.1

75

5 10 15 20 25 30

0

100

200

300

400

500

600

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (7/19/97)
25Mbps Background Traffic (8/9/97)
60Mbps Background Traffic (8/10/97)

Figure 6.16: Standard Deviation (ms) of Network Jitter of TCP Target Flow
with Cell Level Paced Background Tra�c from AAI cloud to AAI

6.5 Comparison of Network Performance After

Network Upgrades

Several network changes have occurred after 10/1/97. To evaluate the impact of

the network changes, the worst case scenarios, which are the 60Mbps Background

Tra�c tests, were selected and re-run. The following tests in this section were

conducted by Mike Linhart [23]. The network changes after 10/1/97 are listed

as follows :

� Nortel Vector ATM Switches were added as edge switches for the AAI net-

work.

Before the network upgrades, almost all the AAI sites were directly con-

nected to ATM core switches that made up the nation wide WAN backbone.

After the upgrade, AAI connections were moved to edge switches to provide

more stable network connections, better network management, and tighter

76

5 10 15 20 25 30
0

1

2

3

4

5

6

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (5/22/97)
25Mbps Background Traffic (7/4/97)
60Mbps Background Traffic (7/10/97)

Figure 6.17: Standard Deviation (ms) of Network Jitter of UDP Target Flows
with Cell Level Paced Background Tra�c from ITTC to AAI cloud

tra�c management.

� AAI network connections were changed from using VBR to UBR service.

AAI sites were fully meshed by peak-rate VBR permanent virtual connec-

tions (PVCs). Because of their full peak-rate con�guration, every AAI VBR

PVC was able to utilize the full OC-3 bandwidth. After the upgrades, UBR

service is used. Although each UBR connection is still able to peak at the

full OC-3 bandwidth, Quality of Service (QoS) is not guaranteed.

� Early Packet Discard (EPD) was enabled where possible.

One of the tra�c management features from the edge switches is the EPD

function. Since AAI sites are connected to the edge switches, EPD is turned

on to prevent unwanted congestion from packet tra�c.

77

5 10 15 20 25 30

0

5

10

15

20

25

30

35

Target Flow Throughput (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

No Background Traffic (7/20/97)
25Mbps Background Traffic (8/9/97)
60Mbps Background Traffic (8/10/97)

Figure 6.18: Standard Deviation (ms) of Network Jitter of UDP Target Flows
with Cell Level Paced Background Tra�c from AAI cloud to ITTC

6.5.1 No Cell Level Pacing

Figure 6.21 and Figure 6.22 are the standard deviation of network jitter and

percentage of packet loss of UDP Target Flows under the impact of 60Mbps

Background Tra�c before and after the network upgrades. The standard devia-

tion was reduced from 30ms to 2.5ms and UDP segment loss was reduced from

22 percent to 1 percent in the worst case. Network congestion within the AAI

backbone has been lowered for the latest test runs compared with the earlier test

runs. Those improvements are signi�cant.

The improvement of network performance shown in Figure 6.21 and Figure

6.22 can be mainly attributed to the EPD setting at the edge switches. Network

congestions are caused by bursty tra�c sources in the experiments. The main

functionality of EPD is to prevent unwanted congestion for packet tra�c. Thus,

many cells from the bursty background tra�c sources were dropped by the EPD

at the edge switches before they were admitted into the AAI backbone. When

78

5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Flow Throughput (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
m

s)

No Background Traffic (5/22/97)
25Mbps Background Traffic (7/4/97)
60Mbps Background Traffic (7/10/97)

Figure 6.19: Percentage of UDP Segment Losses of UDP Target Flows with Cell
Level Paced Background Tra�c from ITTC to AAI cloud

the target ows merged with the background tra�c at the core switches, tra�c

congestion were less likely to occur. As a result, we see a substantial improvement

for the performance of the target ows. However, background tra�c su�ered more

cell losses in this case. In fact, background tra�c had an increase of 50 percent

in number of cells being dropped in the tests after the network upgrades.

6.5.2 Cell Level Pacing on Background Tra�c

Figure 6.23 and Figure 6.24 are the performance of UDP target ows with cell

level paced 60Mbps background tra�c before and after the network upgrades.

There was only a slight improvement in this case because the standard deviation

of network jitter and lost UDP segments were very low in both test runs.

Overall, the additions of edge switches, UBR tra�c setting, and early packet

discard (EPD) setting have made a substantial improvement in performance of

the AAI ATM network.

79

5 10 15 20 25 30

0

5

10

15

20

25

Target Flow Throughput (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)
No Background Traffic (7/20/97)
25Mbps Background Traffic (8/9/97)
60Mbps Background Traffic (8/10/97)

Figure 6.20: Percentage of UDP Segment Losses of UDP Target Flows with Cell
Level Paced Background Tra�c from AAI cloud to ITTC

5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

CBR Throughputs (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

8/21/97
10/12/97

Figure 6.21: Standard Deviation of UDP Target Flows under the non-cell level
paced 60Mbps Background Tra�c

80

5 10 15 20 25 30

0

5

10

15

20

25

CBR Throughputs (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)
8/21/97
10/12/97

Figure 6.22: Losses of UDP Segments of UDP Target Flows under the non-cell
level paced 60Mbps Background Tra�c

5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

CBR Throughputs (Mbps)

S
td

 D
ev

ia
tio

n
of

 N
J

(m
s)

8/10/97
10/13/97

Figure 6.23: Standard Deviation of UDP Target Flow under the cell level paced
60Mbps Background Tra�c

81

5 10 15 20 25 30

0

5

10

15

20

25

CBR Throughputs (Mbps)

Lo
ss

es
 o

f U
D

P
 S

eg
m

en
ts

 (
%

)

8/10/97
10/13/97

Figure 6.24: Losses of UDP Segments of UDP Target Flows under the cell level
paced 60Mbps Background Tra�c

82

Chapter 7

Lessons Learned

This chapter presents the summaries of lessons learned in this study. The lessons

learned are categorized into two sections as follows : (1) ATMWAN performance;

and (2) Doing Network Measurements.

7.1 ATM WAN Performance

This section documents the lessons learned related to the ATMWAN performance

drawn from the experimental results of this study.

7.1.1 TCP and UDP Protocol Performance

TCP and UDP are the popular protocols being used on internet protocol (IP)

networks. User applications only see packet performance, not ATM cell perfor-

mance. So, it is vital to have acceptable packet level performance, especially

in congested networks. This study �nds that the performance of packet tra�c

over ATM WAN in a congested and uncontrolled environment is poor. Delay

jitter and packet losses are large and intolerable in non-cell level paced TCP and

83

UDP tests. When the three multiple sources (two background tra�c sources

from ARL and NRL + target ow from NCCOSC) merged together in the core

switch and competed for the same destination, cells were dropped due to the

peak rate burstiness, particularly from the bursty elements (FTP and WWW)

of background tra�c sources. In ATM, a single 53-byte cell drop may cause an

9180-byte1 [24] packet discard at IP layer due to incomplete error. Network re-

sources are wasted to deliver the useless cells belong to the same corrupted IP

packet. In TCP, retransmission is triggered to recover the lost packets, but the

delay of delivery is added. In UDP, the discarded IP packets are unrecoverable

at the receiving ends. As a result, large delay jitter and losses on packet level

were observed. Tra�c shaping technique must be applied to alter the bursty IP

tra�c streams and have better controls of network tra�c. TCP protocol may be

used in conjunction of tra�c shaping to provide safe transmission of data.

7.1.2 Tra�c Shaping

In an ideal world, user tra�c should have been shaped before submitting to the

networks. Bursty tra�c sources in an uncontrolled environment will adversely im-

pact the network performance. The results in Section 6.2 (No Cell Level Pacing)

indicate poor network performance even though the aggregate average through-

put in the worst case scenario is about 100Mbps2 over a 155.52Mbps OC-3 link.

At �rst, cell level pacing was used on the target ows to evaluate its e�ects. The

results of cell level paced target ows show that its e�ects are dependent on the

direction of the ows and the network structure. In the case of the tra�c ow

from ITTC to AAI cloud, better network performance was observed. Paced cells

1The recommended Maximum Transfer Unit (MTU) for IP over ATM is 9180 bytes.
2including the overhead of TCP/UDP, AAL, ATM, and SONET layers.

84

from the target ows were less likely to be dropped compared to the groups of

back-to-back cells because of the large bu�er setting and the OC-12 to OC-3 rate

mismatch situation in the TIOC switch. However, target ows su�ered more

delay and losses when they went from AAI cloud to ITTC. This is because the

congestion point was in the AAI cloud. The congestion situation was identi�ed

as the tra�c from three OC-3 links competed for the same output port which was

also another OC-3 link in the core switch where they merged together. In addi-

tion, the bu�er setting in core switches was considerately tighter and less than

the setting in TIOC switch. As a result, paced cells from target ows were more

likely to be discarded over a �xed period of time and worse packet performance

was observed for the connections from AAI cloud to ITTC.

The consistent network performance was gained when cell level pacing was

used on background tra�c sources regardless of the direction of the ows. This

time, the network only sees well-behaved tra�c streams coming in. The back-

ground tra�c was not able to transmit at full OC-3 bandwidth. Instead, the

pacing rate was speci�ed as to demonstrate the potential e�ectiveness of ABR

service. Bandwidth was reserved for the target ows. Although the target ows

were still transmitted as groups of back-to-back cells, the small bu�er setting

in core switches was able to absorb the small amount of back-to-back cells and

the bandwidth was available to transmit. Given this situation, the network per-

formance is substantially improved no matter what the direction of the ows

is.

The simplest tra�c shaping technique, cell level pacing, is found to be an

e�ective way to conform tra�c and avoid severe network congestion situation.

85

7.1.3 Asymmetrical Network Structure

In this study, tests were conducted from ITTC to AAI cloud, and AAI cloud

to ITTC separately. Di�erent ATM network performance was observed from

direction of ows. This is because of the asymmetrical network structure in

connection-oriented WANs. In the tests with the tra�c ow from ITTC to AAI

cloud, the congestion point is identi�ed as the OC-12 to OC-3 mismatch in the

TIOC switch. However, when the direction of all the tra�c ows was reversed,

this creates a congestion point within the AAI cloud for the tests with tra�c ow

from AAI cloud to ITTC. The reasons of why asymmetrical network performance

occurs are given in Section 7.1.2 (Tra�c Shaping). As a result, di�erent network

performance was obtained. In designing congestion experiments and evaluating

network performance, the direction of tra�c ows must be taken into consider-

ation. If not, underestimated and inaccurate conclusion might be drawn for the

network performance.

7.1.4 Early Packet Discard (EPD) Functionality and Per-

formance

The main functionality of EPD is to relieve network tension by reserving queue

bu�er in switches. In this study, EPD performance was evaluated. The com-

parison of network performance after network upgrades in Chapter 6 Section 6.5

show substantial gain in network performance and tra�c congestion was reduced

in AAI backbone once the EPD setting was enable. Although bursty background

tra�c sources were observed to have more cells being dropped, mission-critical

target ows have better performance and EPD provides better overall network

performance. The combination of the use of Early Packet Discard (EPD) and

86

Partial Packet Discard (PPD) is believed to provide greater network performance

of packet tra�c.

7.2 Doing Network Measurements

Although there are many documents about the results of measurements presented

nowadays, network researchers, especially beginners, often found the documents

about measurement process lacking or the information is not publicly available.

Network investigators usually gain their experience in doing experiments by trial

and error. Without careful preparation, this often leads to wasted resources for

the projects. This section is to address some of the observations made and issues

found in this study.

7.2.1 Network Connectivity

Maintaining network connectivity, especially in a WAN testbed environment, has

been a di�cult task. In the deployment of AAI network, KU has been struggling

to set up and maintain stable network connections to other sites. PVCs were set

up to interconnect the four experiment sites (ARL, NRL, NCCOSC, and ITTC).

Since the cell level pacing is done on a per PVC basis, speci�c PVCs were set up

to support the tests. Smart (Soft) permanent virtual connections (SPVCs) were

used to set up connections through multiple network switches. The SPVCs with

speci�c pacing rate were set up before and torn down after each experiment.

In addition, the workstations deployed by KU to the other AAI sites were not

stable due to the initial beta version of operating systems. The workstations were

needed to reboot occasionally. In doing the experiments, all four workstations

were needed to be operational and network connections were able to set up. Thus,

87

the problem of network connectivity partly contributes to the delays of schedule

in running the experiments.

7.2.2 Host State

Host state also plays an important role in doing network measurements. Note

that in the cell level paced background tra�c tests of Figure 6.17, the standard

deviation of UDP packet was about 3ms higher compared to the other tests. This

was because some statistic capturing scripts were running on the workstation.

NetSpec is a running process at the application level. As a result, it competes with

other processes to get operating system time. Thus, in this case, the result of the

experiment was adversely altered. To accurately measure network performance

using workstations, host machines must have low system load.

7.2.3 Long Duration of Experiments

Table 7.1 and 7.2 are the run dates of experiments for ITTC to AAI and AAI to

ITTC, respectively. One set of experiments took about 3 hours to complete. In

other words, more than 150 hours of successful experiment time, including the

24-hour validation experiments, were logged in this study.

One of the obstacles found when conducting these experiments was that these

experiments were congestion experiments. They were purposely designed to cause

severe congestion in the network in order to evaluate network performance. How-

ever, they also impacted other tra�c and negatively a�ected the performance of

production network of AAI. Tests were postponed several times to evaluate the

impact on production network in the beginning of this study. Toward to the end

of the study, the tests were conducted on weekend basis to avoid cross tra�c and

88

breakdown in production network of AAI.

5/22/97 UDP Target Flows
UDP Target Flows with 25Mbps Background Tra�c
UDP Target Flows with 60Mbps Background Tra�c

6/4/97 TCP Target Flows alone
TCP Target Flows with 25Mbps Background Tra�c
TCP Target Flows with 60Mbps Background Tra�c

6/5/97 Cell Level Paced UDP Target Flows
6/18/97 Cell Level Paced UDP Target Flows with 25Mbps Background Tra�c

Cell Level Paced UDP Target Flows with 60Mbps Background Tra�c
6/22/97 Cell Level Paced TCP Target Flows
6/23/97 Cell Level Paced TCP Target Flows with 25Mbps Background Tra�c

Cell Level Paced TCP Target Flows with 60Mbps Background Tra�c
7/3/97 TCP Target Flows with Cell Level Paced 25Mbps Background Tra�c
7/4/97 UDP Target Flows with Cell Level Paced 25Mbps Background Tra�c
7/9/97 TCP Target Flows with Cell Level Paced 60Mbps Background Tra�c (Part I)
7/10/97 TCP Target Flows with Cell Level Paced 60Mbps Background Tra�c (Part II)

UDP Target Flows with Cell Level Paced 60Mbps Background Tra�c

Table 7.1: Run Dates of the Experiments from ITTC to AAI cloud

7.2.4 Large Amount of Collected Data

A total of 772 successful experiments had been conducted over the 3-month pe-

riod from May 1997 to August 1997 (Table 7.1 and Table 7.2), which is equivalent

to about 1G bytes of raw data. Each packet in the tests was timestamped and

recorded. This 1G byte of raw data approximately consumed 24 hours of pro-

cessing time.

89

7/19/97 TCP Target Flows alone
Cell Level Paced TCP Target Flows alone

7/20/97 UDP Target Flows alone
Cell Level Paced UDP Target Flows alone

7/26/97 TCP Target Flows with 25Mbps Background Tra�c
TCP Target Flows with 60Mbps Background Tra�c

8/4/97 UDP Target Flows with 25Mbps Background Tra�c
Cell Level Paced UDP Target Flows with 25Mbps Background Tra�c

8/9/97 TCP Target Flows with Cell Level Paced 25Mbps Background Tra�c
UDP Target Flows with Cell Level Paced 25Mbps Background Tra�c

8/10/97 Cell Level Paced UDP Target Flows alone
TCP Target Flows with Cell Level Paced 60Mbps Background Tra�c
UDP Target Flows with Cell Level Paced 60Mbps Background Tra�c

8/21/97 Cell Level Paced TCP Target Flows with 25Mbps Background Tra�c
Cell Level Paced TCP Target Flows with 60Mbps Background Tra�c

8/21/97 Cell Level Paced UDP Target Flows with 60Mbps Background Tra�c
UDP Target Flows with Cell Level Paced 60Mbps Background Tra�c

Table 7.2: Run Dates of the Experiments from AAI cloud to ITTC

90

Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

Here, empirically-derived tra�c models were collected and implemented in Net-

Spec 3.0. Congestion WAN experiments using these emulated tra�c sources were

successfully conducted. Network performance in terms of delay jitter, and packet

loss, were successfully measured under the impact of bursty Background Tra�c

sources. In addition, the e�ects of transport level ow control and ATM level

tra�c shaping were studied and analyzed.

The results obtained from the experiments have shown the poor network per-

formance on target ows and negative impact of bursty background tra�c in

an uncontrolled network environment. Using TCP solely does not improve the

network performance in such a congested network condition. ATM level traf-

�c shaping is found to be a solution to signi�cantly reduce network tension in

addition to improving network performance on target ows. However, a small

percent of cell losses on target ows was still observed in the best case of cell level

pacing. To ensure safe transmission of data and optimized network performance,

91

the combination of TCP ow control and cell level pacing technique should be

used.

The results also indicate that the network performance is dependent on the

direction of the tra�c ows due to the asymmetrical network structure. The

change of direction of the tra�c ows will create a congestion point at di�erent

physical network location.

8.2 Future Work

This section addresses some of the bottlenecks in this study and present some

recommendations for future work.

As new technology advances and more standards are proposed, the user ap-

plications are changing, so is the user tra�c. For example, WWW standards and

browsers keep changing and improving. The generated tra�c is dependent on the

functionality and caching algorithms of the browsers. As a result, the user tra�c

pattern is di�erent from browser to browser, standard to another standard. More

tra�c models should be evaluated.

In the 25Mbps and 60Mbps Background Tra�c tests, there is only a single

TCP connection for WWW sessions. Similarly, FTP sessions only utilize a single

TCP connection. In a more realistic scenario, there are many active WWW and

FTP sessions at the same time. In other words, parallel TCP connections of

many WWW and FTP sessions compete with each other. This will draw more

realistic congestion environment for the tests.

In this study, the analysis of network performance mainly focuses on the target

ows. It will be interesting to evaluate how background tra�c performs in the

tests. Although statistic capturing scripts were running on each workstation,

92

they only show the number of background tra�c cells being dropped for the

whole experiments. More detailed analysis may be done to examine the network

performance on background tra�c.

93

Appendix A

NetSpec Scripts for Validation

Experiments

A.1 FTP script for Validation Experiment

serial {

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001138, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51101;

peer = arl.atm.ittc.ukans.edu:51101;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51101;

peer = galaga.atm.ittc.ukans.edu:51101;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000853, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51102;

peer = arl.atm.ittc.ukans.edu:51102;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

94

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51102;

peer = galaga.atm.ittc.ukans.edu:51102;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000664, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51103;

peer = arl.atm.ittc.ukans.edu:51103;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51103;

peer = galaga.atm.ittc.ukans.edu:51103;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000474, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51104;

peer = arl.atm.ittc.ukans.edu:51104;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51104;

peer = galaga.atm.ittc.ukans.edu:51104;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000521, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51105;

peer = arl.atm.ittc.ukans.edu:51105;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51105;

peer = galaga.atm.ittc.ukans.edu:51105;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000664, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51106;

peer = arl.atm.ittc.ukans.edu:51106;

95

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51106;

peer = galaga.atm.ittc.ukans.edu:51106;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000000948, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51107;

peer = arl.atm.ittc.ukans.edu:51107;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51107;

peer = galaga.atm.ittc.ukans.edu:51107;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001564, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51108;

peer = arl.atm.ittc.ukans.edu:51108;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51108;

peer = galaga.atm.ittc.ukans.edu:51108;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000002086, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51109;

peer = arl.atm.ittc.ukans.edu:51109;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51109;

peer = galaga.atm.ittc.ukans.edu:51109;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000002607, min=1000),

buffer=65536, duration=1800);

96

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51110;

peer = arl.atm.ittc.ukans.edu:51110;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51110;

peer = galaga.atm.ittc.ukans.edu:51110;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003129, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51111;

peer = arl.atm.ittc.ukans.edu:51111;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51111;

peer = galaga.atm.ittc.ukans.edu:51111;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003318, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51112;

peer = arl.atm.ittc.ukans.edu:51112;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51112;

peer = galaga.atm.ittc.ukans.edu:51112;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000002844, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51113;

peer = arl.atm.ittc.ukans.edu:51113;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51113;

peer = galaga.atm.ittc.ukans.edu:51113;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

97

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000002892, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51114;

peer = arl.atm.ittc.ukans.edu:51114;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51114;

peer = galaga.atm.ittc.ukans.edu:51114;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003745, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51115;

peer = arl.atm.ittc.ukans.edu:51115;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51115;

peer = galaga.atm.ittc.ukans.edu:51115;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003366, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51116;

peer = arl.atm.ittc.ukans.edu:51116;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51116;

peer = galaga.atm.ittc.ukans.edu:51116;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003650, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51117;

peer = arl.atm.ittc.ukans.edu:51117;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51117;

peer = galaga.atm.ittc.ukans.edu:51117;

}

}

98

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000002749, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51118;

peer = arl.atm.ittc.ukans.edu:51118;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51118;

peer = galaga.atm.ittc.ukans.edu:51118;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001849, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51119;

peer = arl.atm.ittc.ukans.edu:51119;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51119;

peer = galaga.atm.ittc.ukans.edu:51119;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001280, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51120;

peer = arl.atm.ittc.ukans.edu:51120;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51120;

peer = galaga.atm.ittc.ukans.edu:51120;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001517, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51121;

peer = arl.atm.ittc.ukans.edu:51121;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51121;

99

peer = galaga.atm.ittc.ukans.edu:51121;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001564, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51122;

peer = arl.atm.ittc.ukans.edu:51122;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51122;

peer = galaga.atm.ittc.ukans.edu:51122;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001754, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51123;

peer = arl.atm.ittc.ukans.edu:51123;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51123;

peer = galaga.atm.ittc.ukans.edu:51123;

}

}

cluster {

test galaga.atm.ittc.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001185, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = galaga.atm.ittc.ukans.edu:51124;

peer = arl.atm.ittc.ukans.edu:51124;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51124;

peer = galaga.atm.ittc.ukans.edu:51124;

}

}

}

100

A.2 WWW script for Validation Experiment

serial {

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000002759, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51201;

peer = arl.atm.ittc.ukans.edu:51201;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51201;

peer = hopper.atm.ittc.ukans.edu:51201;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000002989, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51202;

peer = arl.atm.ittc.ukans.edu:51202;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51202;

peer = hopper.atm.ittc.ukans.edu:51202;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000003219, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51203;

peer = arl.atm.ittc.ukans.edu:51203;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51203;

peer = hopper.atm.ittc.ukans.edu:51203;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000003449, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51204;

peer = arl.atm.ittc.ukans.edu:51204;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

101

own = arl.atm.ittc.ukans.edu:51204;

peer = hopper.atm.ittc.ukans.edu:51204;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000003679, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51205;

peer = arl.atm.ittc.ukans.edu:51205;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51205;

peer = hopper.atm.ittc.ukans.edu:51205;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000004139, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51206;

peer = arl.atm.ittc.ukans.edu:51206;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51206;

peer = hopper.atm.ittc.ukans.edu:51206;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000004599, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51207;

peer = arl.atm.ittc.ukans.edu:51207;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51207;

peer = hopper.atm.ittc.ukans.edu:51207;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000007588, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51208;

peer = arl.atm.ittc.ukans.edu:51208;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51208;

102

peer = hopper.atm.ittc.ukans.edu:51208;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000010578, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51209;

peer = arl.atm.ittc.ukans.edu:51209;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51209;

peer = hopper.atm.ittc.ukans.edu:51209;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000011498, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51210;

peer = arl.atm.ittc.ukans.edu:51210;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51210;

peer = hopper.atm.ittc.ukans.edu:51210;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000011957, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51211;

peer = arl.atm.ittc.ukans.edu:51211;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51211;

peer = hopper.atm.ittc.ukans.edu:51211;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000011498, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51212;

peer = arl.atm.ittc.ukans.edu:51212;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51212;

peer = hopper.atm.ittc.ukans.edu:51212;

103

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000012187, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51213;

peer = arl.atm.ittc.ukans.edu:51213;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51213;

peer = hopper.atm.ittc.ukans.edu:51213;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000012647, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51214;

peer = arl.atm.ittc.ukans.edu:51214;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51214;

peer = hopper.atm.ittc.ukans.edu:51214;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000012877, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51215;

peer = arl.atm.ittc.ukans.edu:51215;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51215;

peer = hopper.atm.ittc.ukans.edu:51215;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000013797, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51216;

peer = arl.atm.ittc.ukans.edu:51216;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51216;

peer = hopper.atm.ittc.ukans.edu:51216;

}

104

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000011383, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51217;

peer = arl.atm.ittc.ukans.edu:51217;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51217;

peer = hopper.atm.ittc.ukans.edu:51217;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000009198, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51218;

peer = arl.atm.ittc.ukans.edu:51218;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51218;

peer = hopper.atm.ittc.ukans.edu:51218;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000007588, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51219;

peer = arl.atm.ittc.ukans.edu:51219;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51219;

peer = hopper.atm.ittc.ukans.edu:51219;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000006209, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51220;

peer = arl.atm.ittc.ukans.edu:51220;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51220;

peer = hopper.atm.ittc.ukans.edu:51220;

}

}

105

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000005404, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51221;

peer = arl.atm.ittc.ukans.edu:51221;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51221;

peer = hopper.atm.ittc.ukans.edu:51221;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000005174, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51222;

peer = arl.atm.ittc.ukans.edu:51222;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51222;

peer = hopper.atm.ittc.ukans.edu:51222;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000003679, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51223;

peer = arl.atm.ittc.ukans.edu:51223;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51223;

peer = hopper.atm.ittc.ukans.edu:51223;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000002759, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51224;

peer = arl.atm.ittc.ukans.edu:51224;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51224;

peer = hopper.atm.ittc.ukans.edu:51224;

}

}

}

106

A.3 MPEG script for Validation Experiment

parallel{

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51301;

peer = arl.atm.ittc.ukans.edu:51301;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51301;

peer = hopper.atm.ittc.ukans.edu:51301;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51302;

peer = arl.atm.ittc.ukans.edu:51302;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51302;

peer = hopper.atm.ittc.ukans.edu:51302;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51303;

peer = arl.atm.ittc.ukans.edu:51303;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51303;

peer = hopper.atm.ittc.ukans.edu:51303;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51304;

peer = arl.atm.ittc.ukans.edu:51304;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51304;

peer = hopper.atm.ittc.ukans.edu:51304;

}

}

107

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51305;

peer = arl.atm.ittc.ukans.edu:51305;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51305;

peer = hopper.atm.ittc.ukans.edu:51305;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51306;

peer = arl.atm.ittc.ukans.edu:51306;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51306;

peer = hopper.atm.ittc.ukans.edu:51306;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51307;

peer = arl.atm.ittc.ukans.edu:51307;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51307;

peer = hopper.atm.ittc.ukans.edu:51307;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51308;

peer = arl.atm.ittc.ukans.edu:51308;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51308;

peer = hopper.atm.ittc.ukans.edu:51308;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

108

own = hopper.atm.ittc.ukans.edu:51309;

peer = arl.atm.ittc.ukans.edu:51309;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51309;

peer = hopper.atm.ittc.ukans.edu:51309;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51310;

peer = arl.atm.ittc.ukans.edu:51310;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51310;

peer = hopper.atm.ittc.ukans.edu:51310;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51311;

peer = arl.atm.ittc.ukans.edu:51311;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51311;

peer = hopper.atm.ittc.ukans.edu:51311;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51312;

peer = arl.atm.ittc.ukans.edu:51312;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51312;

peer = hopper.atm.ittc.ukans.edu:51312;

}

}

}

109

A.4 VideoConference script for Validation Ex-

periment

parallel {

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51401;

peer = arl.atm.ittc.ukans.edu:51401;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51401;

peer = hopper.atm.ittc.ukans.edu:51401;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51402;

peer = arl.atm.ittc.ukans.edu:51402;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51402;

peer = hopper.atm.ittc.ukans.edu:51402;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51403;

peer = arl.atm.ittc.ukans.edu:51403;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51403;

peer = hopper.atm.ittc.ukans.edu:51403;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51404;

peer = arl.atm.ittc.ukans.edu:51404;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

110

own = arl.atm.ittc.ukans.edu:51404;

peer = hopper.atm.ittc.ukans.edu:51404;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51405;

peer = arl.atm.ittc.ukans.edu:51405;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51405;

peer = hopper.atm.ittc.ukans.edu:51405;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51406;

peer = arl.atm.ittc.ukans.edu:51406;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51406;

peer = hopper.atm.ittc.ukans.edu:51406;

}

}

cluster {

test hopper.atm.ittc.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = hopper.atm.ittc.ukans.edu:51407;

peer = arl.atm.ittc.ukans.edu:51407;

}

test arl.atm.ittc.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.ittc.ukans.edu:51407;

peer = hopper.atm.ittc.ukans.edu:51407;

}

}

}

111

Appendix B

NetSpec Scripts for WAN

Experiments

B.1 TCP Target Flows scripts

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=9140, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51701;

peer = elmer.atm.tisl.ukans.edu:51701;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=9140, stamps=40000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51701;

peer = nccosc.atm.tisl.ukans.edu:51701;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=18280, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51702;

peer = elmer.atm.tisl.ukans.edu:51702;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=18280, stamps=50000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51702;

peer = nccosc.atm.tisl.ukans.edu:51702;

112

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=27420, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51703;

peer = elmer.atm.tisl.ukans.edu:51703;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=27420, stamps=60000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51703;

peer = nccosc.atm.tisl.ukans.edu:51703;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=36560, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51704;

peer = elmer.atm.tisl.ukans.edu:51704;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=36560, stamps=70000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51704;

peer = nccosc.atm.tisl.ukans.edu:51704;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=45700, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51705;

peer = elmer.atm.tisl.ukans.edu:51705;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=45700, stamps=80000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51705;

peer = nccosc.atm.tisl.ukans.edu:51705;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burstq (blocksize=54840, stamps=10000,

period=14000, qlimit=5000, duration=120);

protocol = tcp (window=1310720);

own = nccosc.atm.tisl.ukans.edu:51706;

peer = elmer.atm.tisl.ukans.edu:51706;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=54840, stamps=90000,

duration=120);

protocol = tcp (window=1310720);

own = elmer.atm.tisl.ukans.edu:51706;

peer = nccosc.atm.tisl.ukans.edu:51706;

}

113

}

114

B.2 UDP Target Flows scripts

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=9140, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51701;

peer = elmer.atm.tisl.ukans.edu:51701;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=9140, stamps=9000,

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51701;

peer = nccosc.atm.tisl.ukans.edu:51701;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=18280, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51702;

peer = elmer.atm.tisl.ukans.edu:51702;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=18280, stamps=9000,

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51702;

peer = nccosc.atm.tisl.ukans.edu:51702;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=27420, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51703;

peer = elmer.atm.tisl.ukans.edu:51703;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=27420, stamps=9000,

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51703;

peer = nccosc.atm.tisl.ukans.edu:51703;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=36560, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51704;

peer = elmer.atm.tisl.ukans.edu:51704;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=36560, stamps=9000,

115

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51704;

peer = nccosc.atm.tisl.ukans.edu:51704;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=45700, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51705;

peer = elmer.atm.tisl.ukans.edu:51705;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=45700, stamps=9000,

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51705;

peer = nccosc.atm.tisl.ukans.edu:51705;

}

}

cluster {

test nccosc.atm.tisl.ukans.edu {

type = burst (blocksize=54840, stamps=9000,

period=14000, duration=120);

protocol = udp (xmtbuf=65536);

own = nccosc.atm.tisl.ukans.edu:51706;

peer = elmer.atm.tisl.ukans.edu:51706;

}

test elmer.atm.tisl.ukans.edu {

type = sink (blocksize=54840, stamps=9000,

durationCorrection=60000, lingerCycles=2000,

duration=120);

protocol = udp (rcvbuf=65536);

own = elmer.atm.tisl.ukans.edu:51706;

peer = nccosc.atm.tisl.ukans.edu:51706;

}

}

116

B.3 25Mbps Background Tra�c script

parallel {

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000011916, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51201;

peer = hopper.atm.tisl.ukans.edu:51201;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51201;

peer = arl.atm.tisl.ukans.edu:51201;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000001873, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51101;

peer = galaga.atm.tisl.ukans.edu:51101;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51101;

peer = nrl.atm.tisl.ukans.edu:51101;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51401;

peer = hopper.atm.tisl.ukans.edu:51401;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51401;

peer = arl.atm.tisl.ukans.edu:51401;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51402;

peer = hopper.atm.tisl.ukans.edu:51402;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51402;

117

peer = arl.atm.tisl.ukans.edu:51402;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51403;

peer = hopper.atm.tisl.ukans.edu:51403;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51403;

peer = arl.atm.tisl.ukans.edu:51403;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51404;

peer = hopper.atm.tisl.ukans.edu:51404;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51404;

peer = arl.atm.tisl.ukans.edu:51404;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51405;

peer = hopper.atm.tisl.ukans.edu:51405;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51405;

peer = arl.atm.tisl.ukans.edu:51405;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51406;

peer = hopper.atm.tisl.ukans.edu:51406;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51406;

peer = arl.atm.tisl.ukans.edu:51406;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

118

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51407;

peer = hopper.atm.tisl.ukans.edu:51407;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51407;

peer = arl.atm.tisl.ukans.edu:51407;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51301;

peer = galaga.atm.tisl.ukans.edu:51301;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51301;

peer = nrl.atm.tisl.ukans.edu:51301;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51302;

peer = galaga.atm.tisl.ukans.edu:51302;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51302;

peer = nrl.atm.tisl.ukans.edu:51302;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51303;

peer = galaga.atm.tisl.ukans.edu:51303;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51303;

peer = nrl.atm.tisl.ukans.edu:51303;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51304;

peer = galaga.atm.tisl.ukans.edu:51304;

119

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51304;

peer = nrl.atm.tisl.ukans.edu:51304;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51305;

peer = galaga.atm.tisl.ukans.edu:51305;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51305;

peer = nrl.atm.tisl.ukans.edu:51305;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51306;

peer = galaga.atm.tisl.ukans.edu:51306;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51306;

peer = nrl.atm.tisl.ukans.edu:51306;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51307;

peer = galaga.atm.tisl.ukans.edu:51307;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51307;

peer = nrl.atm.tisl.ukans.edu:51307;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51308;

peer = galaga.atm.tisl.ukans.edu:51308;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51308;

120

peer = nrl.atm.tisl.ukans.edu:51308;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51309;

peer = galaga.atm.tisl.ukans.edu:51309;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51309;

peer = nrl.atm.tisl.ukans.edu:51309;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51310;

peer = galaga.atm.tisl.ukans.edu:51310;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51310;

peer = nrl.atm.tisl.ukans.edu:51310;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51311;

peer = galaga.atm.tisl.ukans.edu:51311;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51311;

peer = nrl.atm.tisl.ukans.edu:51311;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51312;

peer = galaga.atm.tisl.ukans.edu:51312;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51312;

peer = nrl.atm.tisl.ukans.edu:51312;

}

}

}

121

B.4 60Mbps Background Tra�c script

parallel {

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=WWWItemSize(min=8, max=104857600, shape=0.40),

period=WWWRequestInterarrival(lambda=0.000035747, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51201;

peer = hopper.atm.tisl.ukans.edu:51201;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51201;

peer = arl.atm.tisl.ukans.edu:51201;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=ftpItemSize(min=8),

repeats=ftpNOfItems(min=1),

period=ftpSessionInterarrival(lambda=0.000003745, min=1000),

buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51101;

peer = galaga.atm.tisl.ukans.edu:51101;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51101;

peer = nrl.atm.tisl.ukans.edu:51101;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51401;

peer = hopper.atm.tisl.ukans.edu:51401;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51401;

peer = arl.atm.tisl.ukans.edu:51401;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51402;

peer = hopper.atm.tisl.ukans.edu:51402;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51402;

122

peer = arl.atm.tisl.ukans.edu:51402;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51403;

peer = hopper.atm.tisl.ukans.edu:51403;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51403;

peer = arl.atm.tisl.ukans.edu:51403;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51404;

peer = hopper.atm.tisl.ukans.edu:51404;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51404;

peer = arl.atm.tisl.ukans.edu:51404;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51405;

peer = hopper.atm.tisl.ukans.edu:51405;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51405;

peer = arl.atm.tisl.ukans.edu:51405;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51406;

peer = hopper.atm.tisl.ukans.edu:51406;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51406;

peer = arl.atm.tisl.ukans.edu:51406;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

123

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51407;

peer = hopper.atm.tisl.ukans.edu:51407;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51407;

peer = arl.atm.tisl.ukans.edu:51407;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51408;

peer = hopper.atm.tisl.ukans.edu:51408;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51408;

peer = arl.atm.tisl.ukans.edu:51408;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51409;

peer = hopper.atm.tisl.ukans.edu:51409;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51409;

peer = arl.atm.tisl.ukans.edu:51409;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51410;

peer = hopper.atm.tisl.ukans.edu:51410;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51410;

peer = arl.atm.tisl.ukans.edu:51410;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51411;

peer = hopper.atm.tisl.ukans.edu:51411;

124

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51411;

peer = arl.atm.tisl.ukans.edu:51411;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51412;

peer = hopper.atm.tisl.ukans.edu:51412;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51412;

peer = arl.atm.tisl.ukans.edu:51412;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51413;

peer = hopper.atm.tisl.ukans.edu:51413;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51413;

peer = arl.atm.tisl.ukans.edu:51413;

}

}

cluster {

test arl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoTeleConferenceFrameSize(min=8),

period=66000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = arl.atm.tisl.ukans.edu:51414;

peer = hopper.atm.tisl.ukans.edu:51414;

}

test hopper.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = hopper.atm.tisl.ukans.edu:51414;

peer = arl.atm.tisl.ukans.edu:51414;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51301;

peer = galaga.atm.tisl.ukans.edu:51301;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51301;

125

peer = nrl.atm.tisl.ukans.edu:51301;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51302;

peer = galaga.atm.tisl.ukans.edu:51302;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51302;

peer = nrl.atm.tisl.ukans.edu:51302;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51303;

peer = galaga.atm.tisl.ukans.edu:51303;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51303;

peer = nrl.atm.tisl.ukans.edu:51303;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51304;

peer = galaga.atm.tisl.ukans.edu:51304;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51304;

peer = nrl.atm.tisl.ukans.edu:51304;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51305;

peer = galaga.atm.tisl.ukans.edu:51305;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51305;

peer = nrl.atm.tisl.ukans.edu:51305;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

126

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51306;

peer = galaga.atm.tisl.ukans.edu:51306;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51306;

peer = nrl.atm.tisl.ukans.edu:51306;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51307;

peer = galaga.atm.tisl.ukans.edu:51307;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51307;

peer = nrl.atm.tisl.ukans.edu:51307;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51308;

peer = galaga.atm.tisl.ukans.edu:51308;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51308;

peer = nrl.atm.tisl.ukans.edu:51308;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51309;

peer = galaga.atm.tisl.ukans.edu:51309;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51309;

peer = nrl.atm.tisl.ukans.edu:51309;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51310;

peer = galaga.atm.tisl.ukans.edu:51310;

127

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51310;

peer = nrl.atm.tisl.ukans.edu:51310;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51311;

peer = galaga.atm.tisl.ukans.edu:51311;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51311;

peer = nrl.atm.tisl.ukans.edu:51311;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51312;

peer = galaga.atm.tisl.ukans.edu:51312;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51312;

peer = nrl.atm.tisl.ukans.edu:51312;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51313;

peer = galaga.atm.tisl.ukans.edu:51313;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51313;

peer = nrl.atm.tisl.ukans.edu:51313;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51314;

peer = galaga.atm.tisl.ukans.edu:51314;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51314;

128

peer = nrl.atm.tisl.ukans.edu:51314;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51315;

peer = galaga.atm.tisl.ukans.edu:51315;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51315;

peer = nrl.atm.tisl.ukans.edu:51315;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51316;

peer = galaga.atm.tisl.ukans.edu:51316;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51316;

peer = nrl.atm.tisl.ukans.edu:51316;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51317;

peer = galaga.atm.tisl.ukans.edu:51317;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51317;

peer = nrl.atm.tisl.ukans.edu:51317;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51318;

peer = galaga.atm.tisl.ukans.edu:51318;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51318;

peer = nrl.atm.tisl.ukans.edu:51318;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

129

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51319;

peer = galaga.atm.tisl.ukans.edu:51319;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51319;

peer = nrl.atm.tisl.ukans.edu:51319;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51320;

peer = galaga.atm.tisl.ukans.edu:51320;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51320;

peer = nrl.atm.tisl.ukans.edu:51320;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51321;

peer = galaga.atm.tisl.ukans.edu:51321;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51321;

peer = nrl.atm.tisl.ukans.edu:51321;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51322;

peer = galaga.atm.tisl.ukans.edu:51322;

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51322;

peer = nrl.atm.tisl.ukans.edu:51322;

}

}

cluster {

test nrl.atm.tisl.ukans.edu {

type = burstq (blocksize=videoMPEGFrameSize(min=8),

period=33000, buffer=65536, duration=1800);

protocol = tcp (window=1048576);

own = nrl.atm.tisl.ukans.edu:51323;

peer = galaga.atm.tisl.ukans.edu:51323;

130

}

test galaga.atm.tisl.ukans.edu {

type = sink (blocksize=65536, duration=1800);

protocol = tcp (window=1048576, rcvlowat=8);

own = galaga.atm.tisl.ukans.edu:51323;

peer = nrl.atm.tisl.ukans.edu:51323;

}

}

}

131

Bibliography

[1] V. Paxson, "Empirically Derived Analytic Models of Wide-Area TCP Con-

nections," IEEE/ACM Transactions on Networking, VOL. 2, NO. 4, August

1994.

[2] V. Paxson, "Empirically-derived analytic models of wide-area TCP connec-

tions : Extended report," Lawrence Berkeley Lab., Rep. LBL-34086, May,

1993, Available as papers/ WAN-TCP-models.prelim.1.ps.Z and WAN-TCP-

models.prelim.2.ps.Z via anonymous FTP to ftp.ee.lbl.gov.

[3] V. Paxson, and S. Floyd, "Wide-Area Tra�c : The Failure of Poisson Mod-

eling," Lawrence Berkeley Lab., July 18, 1995.

[4] R. Caceres, P.B. Danzig, S. Jamin, and D.J. Mitzel, "Characteristics of Wide-

Area TCP/IP Conversations," Computer Science Department, University of

Southern California, Los Angeles, California.

[5] P.B. Danzig, and S. Jamin, "tcplib : A Library of TCP Internetwork Traf-

�c Characteristics, " Computer Science Department, University of Southern

California, Los Angeles, California. USC-CS-91-495.

[6] P.B. Danzig, S. Jamin, R. Caceres, D.J. Mitzel, and D. Estrin, "An Empir-

ical Workload Model for Driving Wide-Area TCP/IP Network Simulations,

132

"Computer Science Department, University of Southern California, Los An-

geles, California.

[7] D.P. Heyman, A. Tabatabai, and T.V. Lakshman, "Statistical Analysis and

Simulation Study of Video Teleconference Tra�c in ATM Networks, " IEEE

Transactions on Circuits and System for Video Technology, VOL. 2, NO. 1,

March 1992.

[8] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J.D. Robbins, "Perfor-

mance Models of Statistical Multiplexing in Packet Video Communications,

" IEEE Transactions on Communications, VOL. 36, NO. 7, July 1988.

[9] N.M. Mara�h, Y. Zhang, and R.L. Pickholtz, "Modeling and Queueing Anal-

ysis of Variable-Bit-Rate Coded Video Sources in ATM Networks, " IEEE

Transactions on Circuits and Systems for Video Technology, VOL. 4, NO. 2,

April 1994.

[10] D. P. Heyman and T. V. Lakshman, "Source Models for VBR Broadcast-

Video Tra�c," IEEE/ACM Transactions on Networking, VOL. 4, NO. 1,

February 1996.

[11] M. Krunz, and J. Hughes, "A Tra�c Mopdel For MPEG-Coded VBR

Streams," Department of Electrical Engineering, Department of Computer

Science, Michigan State University.

[12] J. Murphy, "Resource Allocation in ATM networks, " Dublin City University,

March 1996.

[13] R.O. Pnvural, "ASYNCHRONOUS TRANSFER MODE NETWORKS :

Performance Issues, " 2nd Edition, Artech House Boston London, ISBN 0-

89006-804-6.

133

[14] S.F. Smith, "Telephony and Telegraphy," Oxford University Press, 3rd Edi-

tion, 1978.

[15] R.L. Freeman, "Telecommunication System Engineering," 2nd Edition, John

Wiley & Sons, 1989.

[16] C. R. Cunha, A. Bestavros, and M. E. Crovella, "Characteristics of WWW

Client-based Traces," Computer Science Department, Boston University.

Technical Report BU-CS-95-010, July 18, 1995.

[17] M. E. Crovella and A. Bestavros, "Explaining World Wide Web Tra�c Self-

Similarity," Computer Science Department, Boston University, Revised Tech-

nical Report TR-95-015, October 12, 1995.

[18] T.T. Kwan, R.E. McGrath, and D.A. Reed, "User Access Patterns to

NCSA's World Wide Web Server," National Center for Supercomputing Ap-

plications, University of Illinois.

[19] M. F. Arlitt and C. L. Williamson, "Web Server Workload Characterization

: The Search for Invariants," Department of Computer Science, University of

Saskatchewan, 1996.

[20] J. A. Martin, "Internet Overload : Disaster in the Making?", PC World

Magazine, October 1996, P. 145.

[21] Roelof Jonkman, "NetSpec

3.0", http://www.ittc.ukans.edu/projects/aai/products/netspec/, November

1997.

134

[22] V.S. Frost, D.S. Petr, J.B. Evans, D. Niehaus "AAI Performance and Con-

gestion Management Studies : Year 1 Technical Report", Telecommunications

and Information Sciences Laboratory, January 1996.

[23] M. D. Linhart, V.S. Frost, "ATM Background Tra�c Impact on UDP Pack-

ets, " Information and Telecommunications Technology Center, December

1997.

[24] R.Atkinson, "RFC Default IP MTU for use over ATM AAL5," RFC 1626,

Naval Research Laboratory, May 1994

135

